发布网友 发布时间:2022-05-29 19:22
共2个回答
热心网友 时间:2023-11-10 12:11
克鲁斯卡尔算法(Kruskal's algorithm)是两个经典的最小生成树算法的较为简单理解的一个。这里面充分体现了贪心算法的精髓。大致的流程可以用一个图来表示。这里的图的选择借用了Wikipedia上的那个。非常清晰且直观。
首先第一步,我们有一张图,有若干点和边
第一步我们要做的事情就是将所有的边的长度排序,用排序的结果作为我们选择边的依据。这里再次体现了贪心算法的思想。资源排序,对局部最优的资源进行选择。
排序完成后,我们率先选择了边AD。这样我们的图就变成了
.
.
.
.
.
.
第二步,在剩下的边中寻找。我们找到了CE。这里边的权重也是5
.
.
.
.
.
.
依次类推我们找到了6,7,7。完成之后,图变成了这个样子。
.
.
.
.
.
.
下一步就是关键了。下面选择那条边呢? BC或者EF吗?都不是,尽管现在长度为8的边是最小的未选择的边。但是他们已经连通了(对于BC可以通过CE,EB来连接,类似的EF可以通过EB,BA,AD,DF来接连)。所以我们不需要选择他们。类似的BD也已经连通了(这里上图的连通线用红色表示了)。
最后就剩下EG和FG了。当然我们选择了EG。最后成功的图就是下图:
.
.
.
.
.
.
到这里所有的边点都已经连通了,一个最小生成树构建完成。
Kruskal算法的时间复杂度由排序算法决定,若采用快排则时间复杂度为O(N log N)。
热心网友 时间:2023-11-10 12:11
如果描述一条边采用的是二元组的方式来标识两个端点的话(a,b),应该是必须保证新边的两个端点至少有一个不包含于原边集的端点集中,其中每一个连通子图都建立一个单独的端点集。