请教欧氏距离、巴氏距离、马氏距离的区别是什么
发布网友
发布时间:2022-05-27 11:21
我来回答
共2个回答
热心网友
时间:2023-10-18 22:54
欧氏距离:(∑(Xi-Yi)2)1/2,即两项间的差是每个变量值差的平方和再平方根,目的是计算其间的整体距离即不相似性。
我们熟悉的欧氏距离虽然很有用,但也有明显的缺点。它将样品的不同属性(即各指标或各变量)之间的差别等同看待,这一点有时不能满足实际要求。例如,在教育研究中,经常遇到对人的分析和判别,个体的不同属性对于区分个体有着不同的重要性。因此,有时需要采用不同的距离函数。
如果用dij表示第i个样品和第j个样品之间的距离,那么对一切i,j和k,dij应该满足如下四个条件:
①当且仅当i=j时,dij=0
②dij>0
③dij=dji(对称性)
④dij≤dik+dkj(三角不等式)
显然,欧氏距离满足以上四个条件。满足以上条件的函数有多种,本节将要用到的马氏距离也是其中的一种。
第i个样品与第j个样品的马氏距离dij用下式计算:
dij=(xi一xj)'S-1(xi一xj)
其中,xi和xj分别为第i个和第j个样品的m个指标所组成的向量,S为样本协方差矩阵。
马氏距离有很多优点。它不受量纲的影响,两点之间的马氏距离与原始数据的测量单位无关;由标准化数据和中心化数据(即原始数据与均值之差)计算出的二点之间的马氏距离相同。马氏距离还可以排除变量之间的相关性的干扰。它的缺点是夸大了变化微小的变量的作用。
采用巴氏距离特征选择的迭代算法,可以获得最小错误率上界。当特征维数高时,为了减少巴氏距离特征选择计算时间,对样本先进行K-L变换,将特征降低到中间维数。然后进行巴氏距离特征选择,降低到结果的维数。用基于MNIST手写体数字库的试验表明,该文方法比单纯用巴氏距离特征选择计算时间大大减少,并比主分量方法(即单纯使用K-L变换)特征选择的错误率小得多
热心网友
时间:2023-10-18 22:55
谢谢楼上的朋友,你说的我都在查的过程中看到过,但我还不是太明白
欧氏距离是空间中两点的直线距离,巴氏和马氏呢?
请教欧氏距离、巴氏距离、马氏距离的区别是什么
欧氏距离:(∑(Xi-Yi)2)1/2,即两项间的差是每个变量值差的平方和再平方根,目的是计算其间的整体距离即不相似性。我们熟悉的欧氏距离虽然很有用,但也有明显的缺点。它将样品的不同属性(即各指标或各变量)之间的差别等同看待,这一点有时不能满足实际要求。例如,在教育研究中,经常遇到对...
M-各种距离定义
与欧氏距离不同的是它考虑到各种特性之间的联系(例如:一条关于身高的信息会带来一条关于体重的信息,因为两者是有关联的)并且是尺度无关的(scale-invariant),即独立于测量尺度。 对于一个均值为 ,协方差矩阵为 的多变向量 ,其马氏距离为: 马哈拉诺比斯距离 也可以定义为两个服从同一分布并且其协方差矩阵为 的随机...
巴氏距离修正那个公式里的协方差公式什么意思?
马氏距离有很多优点。它不受量纲的影响,两点之间的马氏距离与原始数据的测量单位无关;由标准化数据和中心化数据(即原始数据与均值之差)计算出的二点之间的马氏距离相同。马氏距离还可以排除变量之间的相关性的干扰。它的缺点是夸大了变化微小的变量的作用。
机器学习中的分类距离
闵氏距离也称闵可夫斯基距离,根据其变参数p的不同,可以归为不同类型的距离,比如:曼哈顿距离(p=1);欧氏距离(p=2);切比雪夫距离(p→∞)。 我们已经知道欧氏距离的实质是两个样本同一特征分量值差值的平方和,然后再开平方根,这里的平方指数就是闵氏距离的变参数p取2,如果平方指数(即2次方)换成其他次方(比如1,...