两个序列做类似于卷积的运算,不同的是把乘后求和改为求与并输出所有序列
发布网友
发布时间:2022-05-25 09:36
我来回答
共2个回答
热心网友
时间:2023-10-05 02:40
原理方法
1
基本数学原理
我们假设有两个长度有限的任意序列A(n)和B(n),其中A(n)和B(n)的具体数学表达式可以看下图一。那么这两个有限长序列的卷积就应该为C(n)=A(n)*B(n),其具体表达式请参看一下图二。
2
相关函数指令
Matlab中的conv和deconv指令不仅可以用于多项式的乘除运算,还可以用于两个有限长序列的卷积和解积运算。
Matlab提供的函数conv,语法格式:w=conv(u,v),其中u和v分别是有限长度序列向量,w是u和v的卷积结果序列向量。如果向量u和v的长度分别为N和M,则向量w的长度为N+M-1.如果向量u和v是两个多项式的系数,则w就是这两个多项式乘积的系数。下面我们看一下deconv指令。功能:求向量反褶积和进行多项式除法运算。语法格式:[q,r]=deconv(v,u) ,参数q和r分别返回多项式v除以多项式u的商多项式和余多项式。具体实例请看下一步。
3
conv和deconv指令实例
具体实例请看下图,这里我们求多项式(x2+2x+1)与多项式(2x2+x+3)的积,再求积与(x2+2x+1)的商。需要注意的是向量c代表多项式(2x4+5x3+7x2+7x+3)。
END
两个有限长序列的卷积实例
具体序列的数学形式
在这一步我们将具体的有限长时间序列按数学方式显示,具体请看下图。
解法一:循环求合法求卷积
在本例中我们将按照原理方法第一步中图二的方式进行卷积计算,即循环求合法求卷积。具体的代码及结果请看下图。图一是是生成有限长度时间序列,图二是根据原理方法第一步中图二的方式即循环求合法求卷积的具体代码,图三是是图二的计算结果。
解法二:0起点序列法
下面就说一下第二种方法,即“0起点序列法”,所采用的指令就是我们在原理方法中介绍的conv函数指令。具体代码看下图。
解法三:非平凡区间序列法
下面就说一下第二种方法,即“0起点序列法”,所采用的指令就是我们在原理方法中介绍的conv函数指令。具体代码看下图。图一为计算代码,图二为计算结果。
绘图比较
这一步我们将解法二和解法三的计算结果绘制在一张图片中进行比较,其中第一幅是“0起点法”的计算结果图,第二幅是“非平凡区间法”的计算结果图。其中画图代码为:
subplot(2,1,1),stem(kc,c),text(20,6,'0 起点法') %画解法二的结果
CC=[zeros(1,KC(1)),C]; %补零是为了两子图一致
subplot(2,1,2),stem(kc,CC),text(18,6,'非平凡区间法') %画解法三的结果
xlabel('n')
小结
有以上可以得出如下结论:
1、“解法三”最简洁、通用;
2、“解法二”使用于序列起点时刻N1或(和)M1小于0的情况,比较困难;
3、“解法一”最繁琐,效率低下。
热心网友
时间:2023-10-05 02:40
在信号处理中,用互相关来衡量两个时间序列 x(t) 和 y(t) 在两个不同时刻 t1,t2 的取值之间的相似程度,通常可以用于在长序列中寻找一个特定的短序列。
在数理统计中,互相关用来两个随机序列的相关性。
从定义式中可以看到,互相关函数和卷积运算类似,也是两个序列滑动相乘,但是区别在于:
互相关的两个序列都不翻转,直接滑动相乘,求和;卷积的其中一个序列需要先翻转,然后滑动相乘,求和。