发布网友 发布时间:2022-05-24 13:08
共1个回答
热心网友 时间:2023-10-14 22:52
向量a的模乘以向量b的模的公式:如果是数量积,a·b=|a||b|cosθ是一个长度,也就是数。而|a·b|也求的就是a·b的长度与上式相同。如果是矢量积,|a×b|是一个向量。设那个向量是c,有∣a×b∣=|a|·|b|·sinθ;a×b的方向垂直于a和b,且a、b和a×b按这个次序构成右手系。方向:a向量与b向量的向量积的方向与这两个向量所在平面垂直,且遵守右手定则。(一个简单的确定满足“右手定则”的结果向量的方向的方法是这样的:若坐标系是满足右手定则的,当右手的四指从a以不超过180度的转角转向b时,竖起的大拇指指向是c的方向。)也可以这样定义(等效):向量积|c|=|a×b|=|a||b|sin,即c的长度在数值上等于以a、b、夹角为θ组成的平行四边形的面积。而c的方向垂直于a与b所决定的平面,c的指向按右手定则从a转向b来确定。运算结果c是一个伪向量。这是因为在不同的坐标系中c可能不同。