发布网友 发布时间:2022-05-26 20:17
共4个回答
热心网友 时间:2023-10-25 13:02
一个质量为m的物体具有速度v,则它具有的动能为mv^2/2。假设无穷远地方的引力势能为零(应为物体距离地球无穷远时,物体受到的引力势能为零,所以这个假设是合理的)。
则距离地球距离为r的物体的势能为-mar(a为该点物体的重力加速度,负号表示物体的势能比无穷远点的势能小)。又因为地球对物体的引力可视为物体的重量,所以有
GmM/r2=ma
即a=(GM)/r2.
所以物体的势能又可写为-GmM/r,其中M为地球质量。设物体在地面的速度为V,地球半径为R,则根据能量守恒定律可知,在地球表面物体动能与势能之和等于在r处的动能与势能之和,即
mV2/2+(-GMm/R)=mv2/2+(-GmM/r)。
当物体摆脱地球引力时,r可看作无穷大,引力势能为零,则上式变为
mV2/2-GmM/R=mv2/2.
显然,当v等于零时,所需的脱离速度V最小,即
V=2GM/R开根号,
又因为
GMm/R2=mg,
所以
V=2gR开根号,
另外,由上式可见脱离速度(第二宇宙速度)恰好等于第一宇宙速度的根号2倍。
其中g为地球表面的重力加速度,其值为9.8牛顿/千克。地球半径R约为6370千米,从而最终得到地球的脱离速度为11.17千米/秒。
不同天体有不同的逃逸速度,脱离速度公式也同样适用于其他天体。
扩展资料
逃逸速度,取决于星球的质量。如果一个星球的质量大,其引力就强,逃逸速度值就大。反之,一个较轻的星球,将会有较小的逃逸速度。
逃逸速度还取决于物体与星球中心的距离,距离越近,逃逸速度越大。如果一个天体的质量与表面引力很大,使得逃逸速度达到甚至超过了光速,该天体就是黑洞。黑洞的逃逸速度达30万千米/秒。
一般认为,宇宙没有边界,说宇宙中的物质逃离到别的地方去这样的问题是没有意义的。因此,讨论宇宙的逃逸速度,也似乎没有意义。
第二宇宙速度是人造天体脱离地球引力束缚所需的最小速度。当物体飞行速度达到11.2千米/秒时,就可以摆脱地球引力的束缚,飞离地球进入环绕太阳运行的轨道,不再绕地球运行。
这个脱离地球引力的最小速度就是第二宇宙速度。各种行星探测器的起始飞行速度都高于第二宇宙速度。第二宇宙速度约为11.2公里/秒。
参考资料来源;百度百科-第二宇宙速度
热心网友 时间:2023-10-25 13:02
一个质量为m的物体具有速度v,则它具有的动能为mv^2/2。假设无穷远地方的引力势能为零(应为物体距离地球无穷远时,物体受到的引力势能为零,所以这个假设是合理的),则距离地球距离为r的物体的势能为-mar(a为该点物体的重力加速度,负号表示物体的势能比无穷远点的势能小)。又因为地球对物体的引力可视为物体的重量,所以有
GmM/r^2=ma
即a=(GM)/r^2.
所以物体的势能又可写为-GmM/r,其中M为地球质量。设物体在地面的速度为V,地球半径为R,则根据能量守恒定律可知,在地球表面物体动能与势能之和等于在r处的动能与势能之和,即
mV^2/2+(-GMm/R)=mv^2/2+(-GmM/r)。
当物体摆脱地球引力时,r可看作无穷大,引力势能为零,则上式变为
mV^2/2-GmM/R=mv^2/2.
显然,当v等于零时,所需的脱离速度V最小,即V=2GM/R开根号,
又因为
GMm/R^2=mg,
所以
V=2gR开根号,
另外,由上式可见脱离速度(第二宇宙速度)恰好等于第一宇宙速度的根号2倍。
其中g为地球表面的重力加速度,其值为9.8牛顿/千克。地球半径R约为6370千米,从而最终得到地球的脱离速度为11.17千米/秒。
不同天体有不同的逃逸速度,脱离速度公式也同样适用于其他天体。
热心网友 时间:2023-10-25 13:03
逃逸速度是指第二宇宙速度,一物体的动能等于该物体的重力势能的大小时的该物体的速率。逃逸速度一般描述为摆脱一重力场的引力束缚飞离那重力场所需的最低速率。“逃逸速度”这一用语可以认为是用词不当,因为它实际上是速率,而不是速度,亦即是说,它表示该物体必须运动得多快,却与运动方向无关,除了不是移向那重力场。更术语地说,逃逸速度是标量,而非向量。热心网友 时间:2023-10-25 13:04
推导步骤: