发布网友 发布时间:2022-04-22 03:34
共4个回答
热心网友 时间:2023-01-22 17:23
由指数和对数的互相转化关系可得出:
1.两个正数的积的对数,等于同一底数的这两个数的对数的和,即
2.两个正数商的对数,等于同一底数的被除数的对数减去除数对数的差,即
3一个正数幂的对数,等于幂的底数的对数乘以幂的指数,即
4.若式中幂指数则有以下的正数的算术根的对数运算法则:一个正数的算术根的对数,等于被开方数的对数除以根指数,即
扩展资料:
对数函数y=logax 的定义域是{x 丨x>0},但如果遇到对数型复合函数的定义域的求解,除了要注意大于0以外,还应注意底数大于0且不等于1,如求函数y=logx(2x-1)的定义域,需同时满足x>0且x≠1和2x-1>0 ,得到x>1/2且x≠1,即其定义域为 {x 丨x>1/2且x≠1}
在实数域中,真数式子没根号那就只要求真数式大于零,如果有根号,要求真数大于零还要保证根号里的式子大于等于零(若为负数,则值为虚数),底数则要大于0且不为1。
在一个普通对数式里 a<0,或=1 的时候是会有相应b的值。但是,根据对数定义:log以a为底a的对数;如果a=1或=0那么log以a为底a的对数就可以等于一切实数。(比如log11也可以等于2,3,4,5,等等)
如果不等于1的正实数,这个定义可以扩展到在一个域中的任何实数 (参见幂)。类似的,对数函数可以定义于任何正实数。对于不等于1的每个正底数 ,有一个对数函数和一个指数函数,它们互为反函数。
参考资料:百度百科——对数运算法则
热心网友 时间:2023-01-22 18:41
1、两个正数的积的对数,等于同一底数的这两个数的对数的和,即。
2、两个正数商的对数,等于同一底数的被除数的对数减去除数对数的差,即。
3、一个正数幂的对数,等于幂的底数的对数乘以幂的指数,即。
4、若式中幂指数则有以下的正数的算术根的对数运算法则:一个正数的算术根的对数,等于被开方数的对数除以根指数,即。
扩展资料
1、定义域求解:对数函数y=logax 的定义域是{x 丨x>0},但如果遇到对数型复合函数的定义域的求解,除了要注意大于0以外,还应注意底数大于0且不等于1。
如求函数y=logx(2x-1)的定义域,需同时满足x>0且x≠1和2x-1>0 ,得到x>1/2且x≠1,即其定义域为 {x 丨x>1/2且x≠1}
2、值域:实数集R,显然对数函数无界;
3、定点:对数函数的函数图像恒过定点(1,0);
4、单调性:a>1时,在定义域上为单调增函数;
5、0<a<1时,在定义域上为单调减函数;
6、奇偶性:非奇非偶函数
7、周期性:不是周期函数
参考资料:百度百科——对数函数
热心网友 时间:2023-01-22 20:16
对数公式的运算法则,如下图所示:
推导过程有:
扩展资料:
1、对数公式是数学中的一种常见公式,如果a^x=N(a>0,且a≠1),则x叫做以a为底N的对数,记做x=log(a)(N),其中a要写于log右下。其中a叫做对数的底,N叫做真数。通常我们将以10为底的对数叫做常用对数,以e为底的对数称为自然对数。
2、对数运算,实际上也就是指数在运算。
参考资料:对数公式_百度百科 对数_百度百科
热心网友 时间:2023-01-22 22:24
对数函数的运算法则公式: