初中奥数题典例
发布网友
发布时间:2022-05-27 14:29
我来回答
共3个回答
热心网友
时间:2023-10-28 00:13
经典难题(一)
1、已知:如图,O是半圆的圆心,C、E是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO.
求证:CD=GF.(初二)
2、已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=150.
求证:△PBC是正三角形.(初二)
3、如图,已知四边形ABCD、A1B1C1D1都是正方形,A2、B2、C2、D¬2分别是AA1、BB1、CC1、DD1的中点.
求证:四边形A2B2C2D2是正方形.(初二)
4、已知:如图,在四边形ABCD中,AD=BC,M、N分别是AB、CD的中点,AD、BC的延长线交MN于E、F.
求证:∠DEN=∠F.
1.如下图做GH⊥AB,连接EO。由于GOFE四点共圆,所以∠GFH=∠OEG,
即△GHF∽△OGE,可得 = = ,又CO=EO,所以CD=GF得证。
2. 如下图做△DGC使与△ADP全等,可得△PDG为等边△,从而可得
△DGC≌△APD≌△CGP,得出PC=AD=DC,和∠DCG=∠PCG=150
所以∠DCP=300 ,从而得出△PBC是正三角形
3.如下图连接BC1和AB1分别找其中点F,E.连接C2F与A2E并延长相交于Q点,
连接EB2并延长交C2Q于H点,连接FB2并延长交A2Q于G点,
由A2E= A1B1= B1C1= FB2 ,EB2= AB= BC=FC1 ,又∠GFQ+∠Q=900和
∠GEB2+∠Q=900,所以∠GEB2=∠GFQ又∠B2FC2=∠A2EB2 ,
可得△B2FC2≌△A2EB2 ,所以A2B2=B2C2 ,
又∠GFQ+∠HB2F=900和∠GFQ=∠EB2A2 ,
从而可得∠A2B2 C2=900 ,
同理可得其他边垂直且相等,
从而得出四边形A2B2C2D2是正方形。
4.如下图连接AC并取其中点Q,连接QN和QM,所以可得∠QMF=∠F,∠QNM=∠DEN和∠QMN=∠QNM,从而得出∠DEN=∠F。
热心网友
时间:2023-10-28 00:14
1、已知:如图,O是半圆的圆心,C、E是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO.
求证:CD=GF.(初二)
2、已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=150.
求证:△PBC是正三角形.(初二)
3、如图,已知四边形ABCD、A1B1C1D1都是正方形,A2、B2、C2、D¬2分别是AA1、BB1、CC1、DD1的中点.
求证:四边形A2B2C2D2是正方形.(初二)
4、已知:如图,在四边形ABCD中,AD=BC,M、N分别是AB、CD的中点,AD、BC的延长线交MN于E、F.
求证:∠DEN=∠F.
热心网友
时间:2023-10-28 00:14
http://www.233.com/zhongkao/aosai/