矩估计与似然估计
发布网友
发布时间:2022-05-27 20:07
我来回答
共3个回答
热心网友
时间:2023-11-28 15:24
在讲解极大似然估计法之前,我们从一个例子入手,了解极大似然估计法的直观想法:设甲箱中有99个白球,1个黑球;乙箱中有1个白球,99个黑球.现随机取出一箱,再从中随机取出一球,结果是黑球,这时我们自然更多地相信这个黑球是取自乙箱的.因此极大似然估计法就是要选取这样的数值作为参数的估计值,使所选取的样本在被选的总体中出现的可能性为最大.
定义.若总体X的密度函数为p(x; θ1, θ2,…, θk),其中θ1, θ2,…, θk是未知参数,(X1, X2,…, Xn)是来自总体X的样本,称
为θ1,θ2,…,θk的似然函数.其中x1,x2,…,xn为样本观测值.
若有使得
成立, 则称为θj极大似然估计值(j=1,2,…,k).
特别地,当k=1时,似然函数为:
根据微积分中函数极值的原理,要求使得上式成立,只要令
其中L(θ)=L(x1,x2,…,xn;θ).
解之,所得解为极大似然估计,上式称为似然方程.
又由于与的极值点相同,所以根据情况,也可以求出的解作为极大似然估计.
若总体X为离散型随机变量,其概率分布为:
P(X=x)=p(x; θ1, θ2,…,θk)
其中θ1, θ2,…, θk为未知参数,同样可以写出似然函数及似然方程.
例3.7.3 已知总体X服从泊松分布
(λ>0, x=0,1,…)
(x1,x2,…,xn)是从总体X中抽取的一个样本的观测值,试求参数λ的极大似然估计.
解.参数λ的似然函数为
两边取对数:
上式对λ求导,并令其为0,即
从而得
即样本均值是参数λ的极大似然估计.
例3.7.4 设总体X服从正态分布N(μ, σ2),试求μ及σ2的极大似然估计.
解.μ,σ的似然函数为
似然方程组为
解之得: ,
.
因此及分别是μ及σ2的极大似然估计.
上面我们介绍了两种求估计量的方法:矩估计法和极大似然估计法.从矩估计法公式我们得到,对正态总体N(μ, σ2),未知参数μ的矩估计为,σ2的矩估计为;而由例3.7.4, μ, σ2的极大似然估计也分别是与.一般地,在相当多的情况下,矩估计与极大似然估计是一致的,但也确有许多情形,矩估计法和极大似然估计法给出的估计是不同的.谁优谁劣?我们可以用估计量的优劣标准进行评价.除此之外,亦可以根据问题的实际意义进行判定.
热心网友
时间:2023-11-28 15:24
所谓矩估计法, 就是利用样本矩来估计总体中相应的参数. 最简单的矩估计法是用一阶样本原点矩来估计总体的期望而用二阶样本中心矩来估计总体的方差.
极大似然估计的方法:
1、构造似然函数,L(x1,x2,...,xn)=每个Xi 密度函数的连乘。每个Xi 的密度函数与总体的密度函数相同。
2、求L(x1,x2,...,xn)或lnL(x1,x2,...,xn)的最大值。求偏导数,令偏导数为0,解出驻点即可。
热心网友
时间:2023-11-28 15:25
所谓矩估计法, 就是利用样本矩来估计总体中相应的参数. 最简单的矩估计法是用一阶样本原点矩来估计总体的期望而用二阶样本中心矩来估计总体的方差.