发布网友 发布时间:2022-05-27 15:47
共1个回答
热心网友 时间:2023-10-31 21:29
asinx+bcosx =√(a^2+b^2){sinx*(a/√(a^2+b^2)+cosx*(b/√(a^2+b^2)} =√(a^2+b^2)sin(x+φ) 所以:cosφ=a/√(a^2+b^2) 或者 sinφ=b/√(a^2+b^2) 或者 tanφ=b/a(φ=arctanb/a )其实就是运用了sin的二倍角公式(逆过程,即倒推),要验证一下的话,就用sin^2+cos^2=1 (括号比较多啊,耐心看一下吧,其实那一长串,即(a/√(a^2+b^2),就是一个分数开根号,原理很简单的)追问没有在问这个 是补充里那张图的式子