发布网友 发布时间:2022-05-12 00:58
共3个回答
热心网友 时间:2023-10-31 14:56
32^0.5
=32^1/2
=√32
=√16×√2
=4√2
分数指数幂是正分数指数幂和负分数指数幂的统称。
分数指数幂是一个数的指数为分数,正数的分数指数幂是根式的另一种表示形式。负数的分数指数幂并不能用根式来计算,而要用到其它算法,是高中代数的重点。
扩展资料:
指数的运算法则:
1、[a^m]×[a^n]=a^(m+n) 【同底数幂相乘,底数不变,指数相加】
2、[a^m]÷[a^n]=a^(m-n) 【同底数幂相除,底数不变,指数相减】
3、[a^m]^n=a^(mn) 【幂的乘方,底数不变,指数相乘】
4、[ab]^m=(a^m)×(a^m) 【积的乘方,等于各个因式分别乘方,再把所得的幂相乘】
热心网友 时间:2023-10-31 14:56
指数为小数,都可以化为指数为(0,1)区间上小数加上一个整数的形式。我们记一个数x的小数部分是{x},{x}可能是有理数,也可能是无理数。有理数的确可以表示为分数,但是这个做法是错误的,我们可以看到,-27的1/3次方是-3,但是1/3本身还可以表示为2/6,-27的2/6次方显然是正数3. 如此我们看到,分数的分子分母是具有奇偶性的,可能改变结果的正负。而且对于更一般的无理数,我们根本无法用分数表示。所以一般的,我们是通过有理数*近来估算,而且只考虑底数为正数的情况,这样我们就可以用既约分数来表示指数或者指数的范围,对于1/q形式的指数,只需要开q次方根即可。对于底数为负数,要引入复数的概念。热心网友 时间:2023-10-31 14:57
很简单啊~