辉光、电晕、火花、弧光放电有什么区别和联系?
发布网友
发布时间:2022-05-12 00:05
我来回答
共2个回答
热心网友
时间:2023-10-27 21:33
一、定义不同
1、辉光放电(glow discharge)是指低压气体中显示辉光的气体放电现象,即是稀薄气体中的自持放电(自激导电)现象;
2、电晕放电(corona discharge)是指气体介质在不均匀电场中的局部自持放电,是最常见的一种气体放电形式;
3、火花放电是指在普通气压及电源功率不太大的情况下,若在两个曲率不大的冷电极之间加上高电压,则电极间的气体将会被强电场击穿而产生自激导电的放电形式;
4、弧光放电是指呈现弧状白光并产生高温的气体放电现象。无论在稀薄气体、金属蒸气或大气中,当电源功率较大,能提供足够大的电流(几安到几十安),使气体击穿,发出强烈光辉,产生高温(几千到上万度),这种气体自持放电的形式就是弧光放电;
二、原理机制不同
1、辉光放电是种低气压放电(Low pressure discharge)现象,工作压力一般都低于10 mbar,其基本构造是在封闭的容器内放置两个平行的电极板,利用产生的电子将中性原子或分子激发,而被激发的粒子由激发态降回基态时会以光的形式释放出能量;
2、电晕放电的形成机制因尖端电极的极性不同而有区别,这主要是由于电晕放电时空间电荷的积累和分布状况不同所造成的。
在直流电压作用下,负极性电晕或正极性电晕均在尖端电极附近聚集起空间电荷。
在负极性电晕中,当电子引起碰撞电离后,电子被驱往远离尖端电极的空间,并形成负离子,在靠近电极表面则聚集起正离子。电场继续加强时,正离子被吸进电极,此时出现一脉冲电晕电流,负离子则扩散到间隙空间。
此后又重复开始下一个电离及带电粒子运动过程。如此循环,以致出现许多脉冲形式的电晕电流。
3、火花放电的形成机制是,在电势差很高的正负带电区域间出现闪光并发出声响的瞬时气体放电现象。在放电的空间内,气体分子发生电离,气体迅速而剧烈发热,发出闪光和声响。火花放电是间歇性的。雷电就是自然界中大规模的火花放电现象。
4、弧光放电的产生机制是使两电极接触后随即分开,因短路发热,使阴极表面温度陡增,产生热电子发射 。热电子发射使碰撞电离及阴极的二次电子发射急剧增加,从而使两极间的气体具有良好的导电性。
扩展资料:
辉光放电的应用:
辉光放电的主要应用是利用其发光效应(如霓虹灯、日光灯)以及正常辉光放电的稳压效应(如氖稳压管)。 利用辉光放电的正柱区产生激光的特性,制做氦氖激光器。
近年来,辉光放电在污水处理、灭菌消毒、聚合物材料表面改性、分析仪器离子源等方面也多有应用。
由于其特点,辉光发电应用于发射光谱分析,用作气体分析和难激发元素分析的激发光源。在玻璃管两端各接一平板电极,充入惰性气体,加数百伏直流电压,管内便产生辉光放电,其电流为10-4~10-2A。
放电形式与气体性质、压力、放电管尺寸、电极材料、形状和距离有关。利用其在发射光谱中的应用,可以检测铅的浓度等。
参考资料来源:百度百科——辉光放电
参考资料来源:百度百科——电晕放电
参考资料来源:百度百科——火花放电
参考资料来源:百度百科——弧光放电
热心网友
时间:2023-10-27 21:33
1、辉光放电
glow discharge
低压气体中显示辉光的气体放电现象。在置有板状电极的玻璃管内充入低压(约几毫米汞柱)气体或蒸气,当两极间电压较高(约1000伏)时,稀薄气体中的残余正离子在电场中加速,有足够的动能轰击阴极,产生二次电子,经簇射过程产生更多的带电粒子,使气体导电。辉光放电的特征是电流强度较小(约几毫安),温度不高,故电管内有特殊的亮区和暗区,呈现瑰丽的发光现象。
辉光放电时,在放电管两极电场的作用下,电子和正离子分别向阳极、阴极运动,并堆积在两极附近形成空间电荷区。因正离子的漂移速度远小于电子,故正离子空间电荷区的电荷密度比电子空间电荷区大得多,使得整个极间电压几乎全部集中在阴极附近的狭窄区域内。这是辉光放电的显著特征,而且在正常辉光放电时,两极间电压不随电流变化。
在阴极附近,二次电子发射产生的电子在较短距离内尚未得到足够的能使气体分子电离或激发的动能,所以紧接阴极的区域不发光。而在阴极辉区,电子已获得足够的能量碰撞气体分子,使之电离或激发发光。其余暗区和辉区的形成也主要取决于电子到达该区的动能以及气体的压强(电子与气体分子的非弹性碰撞会失去动能)。
辉光放电的主要应用是利用其发光效应(如霓虹灯、日光灯)以及正常辉光放电的稳压效应(如氖稳压管)。
2、电晕现象就是带电体表面在气体或液体介质中局部放电的现象,常发生在不均匀电场中电场强度很高的区域内(例如高压导线的周围,带电体的尖端附近)。其特点为:出现与日晕相似的光层,发出嗤嗤的声音,产生臭氧、氧化氮等。
均匀电场中,由于各点电场强度都是一样的,当施加稳态电压(直流、工频交流),电场强度达到空气的击穿强度时,间隙就击穿了。但日常很难见到均匀电场。对于稍不均匀的电场,日常见得很多。如球-球间隙,球-板间隙等,以球-球间隙为例,当间隙距离小于1/4D时,其电场基本为均匀电场,当 D/4 ≤S≤ D/2 时,其电场为稍不均匀电场。
均匀电场的放电电压也可用公式计算,公式为(单位为kV):
δ—空气相对密度;
s—间隙距离cm;
应用说明
不均匀电场的差别就在于空气间隙内,各点的电场强度不均匀,在电力线比较集中的电极附近,电场强度最大,而电力线疏的地方,电场强度很小,如棒-棒间隙,是一对称的不均匀电场,在电极的尖端处电力线最集中,电场强度也最大。当加上高压后,会在电极附近产生空气的局部放电——电晕放电,电压再加高时,电晕放电更加强烈,致使间隙内发生刷状放电,而后就击穿了(电弧放电)。如棒-板间隙,在尖电极附近电场强度最大,加上高压后,电极附近先产生电晕放电,而板上的电力线很疏,不会产生电晕。当电压足够高时,棒极也将产生刷状、火花放电,最后导致电弧放电(击穿)。电晕多发生在导体壳的曲率半径小的地方,因为这些地方,特别是尖端,其电荷密度很大。而在紧邻带电表面处,电场E与电荷密度σ成正比,故在导体的尖端处场强很强(即σ和E都极大)。所以在空气周围的导体电势升高时,这些尖端之处能产生电晕放电。通常均将空气视为非导体,但空气中含有少数由宇宙线照射而产生的离子,带正电的导体会吸引周围空气中的负离子而自行徐徐中和。若带电导体有尖端,该处附近空气中的电场强度E可变得很高。当离子被吸向导体时将获得很大的加速度,这些离子与空气碰撞时,将会产生大量的离子,使空气变成极易导电,同时借电晕放电而加速导体放电。因空气分子在碰撞时会发光,故电晕时在导体尖端处可见亮光。
应用
(1)电晕引起电能的损耗,并对通讯和广播发生干扰。例如,雷雨时尖端电晕发电,避雷针即用此法中和带电的云层而防止雷击。
(2)静电复印机的充电过程是光导体鼓在暗处并处在某一极性的电场中,使其表面均匀地充上某种极性的电荷而具有一定的表面电位的过程。这一过程实际上是鼓的敏化过程,使原来不具备感光性的鼓具有较好的感光性。它通常采用电晕放电法,即在离鼓一定距离的电极丝上加高压电,使其产生电晕放电,使光导体表面带上静电荷的过程,这个过程叫“充电”。
3、火花一般的要包括电火花
电火花一般是尖端放电现象,伴随自由电荷的转移,发光发热,不同于一般的燃烧现象
石头与石头磨檫,局部温度并达不到组成石头物质的燃点,只不过是快速摩擦起电,电荷又迅速中和,所以产生的是电火花
4、弧光放电是常压气体高温下放电,电压不高、电流比较大,通常用在仪器的光源部分。此外气体放电还有电势差导致的火花放电