∫∫1/xdydz+1/ydzdx+1/zdxdy,其中,∑是球面x^2+y^2+z^2=r^2的
发布网友
发布时间:19小时前
我来回答
共1个回答
热心网友
时间:17小时前
答案为:12Rπ
考虑球坐标换元:
x = R sinφ cosθ,x'φ = R cosφ cosθ,x'θ = - R sinφ sinθ
y = R sinφ sinθ,y'φ = R cosφ sinθ,y'θ = R sinφ cosθ
z = R cosφ,z'φ = - R sinφ,z'θ = 0
∂(y,z)/∂(φ,θ) = R² sin²φ cosθ
∂(z,x)/∂(φ,θ) = R² sin²φ sinθ
∂(x,y)/∂(φ,θ) = R² sinφ cosφ
0 ≤ φ ≤ π,0 ≤ θ ≤ 2π
1/x dydz = (R² sin²φ cosθ)/(R sinφ cosθ) = R sinφ
1/y dzdx = (R² sin²φ sinθ)/(R sinφ sinθ) = R sinφ
1/z dxdy = (R² sinφ cosφ)/(R cosφ) = R sinφ
∫∫_(Σ) 1/x dydz + 1/y dzdx + 1/z dxdy
= ∫(0,2π) dθ ∫(0,π) 3R sinφ dφ
= (3R)(2π)(2)
= 12Rπ