发布网友 发布时间:2022-05-07 19:35
共15个回答
热心网友 时间:2022-06-01 06:04
证明:这样的题,是属于难为人的题,因为之所以称为定理,就是离开它,就无法证明。原则上定理是不交叉的,当然有些题,会出现交叉现象。这都是个别现象。如果定理都出现了交叉现象,说明定理有重复内容。就要取消其中的一个定理。因此,加*条件的题,都属于难为人的题;做这样的题对提高数学学术水平的帮助不大。数学的方法是把复杂的问题简单化的过程,而不是把简单的问题复杂化。这种题做的太多,会影响做题的思路。所有高考的答题,只要你做题越简单,说明你的水平越高。做题越复杂,说明你的思路不清晰;说明你掌握的知识的能力越差。
见下图,作OF⊥AB于F,得等腰Rt△AOF和Rt△BOF; 作FH⊥BO于H;联结EF,交OB于G;这是最直接最简单的方法,但是,无法证明OGFH是正方形,缺少条件。因此,用解析几何来证明。设AO=BO=4;依题意:∠1=∠2=45D/2=22.5D,∠ADB=∠1+∠AOB=90D+22.5D;直线BE的方程:
y=tan∠ADBx+4=-cot22.5Dx+4=-[√(1+cos45D)/√(1-45D)]x+4=-(√2+1)x+4......(1);
直线OE方程为:y=tan(-22,5D)=-[1/(√2+1)]x=-(√2-1)x......(2);
(2)-(1),得:(-√2+1)x+(1+√2)x-4=0, x=2; y=-2(√2-1); E点坐标(2,2-2√2);
AE的直线方程为:(y-0)/(x-4)=(2-2√2-0)/(2-4)=(√2-1),
整理,得:y=(√2-1)x-4(√2-1)......(3);
因为:-(√2+1)=-(2-1)/(√2-1)=-1/(√2-1): 所以,对比式(1)和式(3)的斜率,直线AE⊥BE。原命题得证。证毕。
追问关键是,如果你的小孩读小学一年级,你能够用高中的知识点来帮他解答小学一年级的题目,并让他理解、弄懂、掌握吗?!追答我不清楚这是从哪里得到的题,但是,是在直角坐标系中,因此,它提示是可以用解析几何来做解答的。如果是单纯的几何图形,我绝对不会用坐标系来解题的。
对不起!没有仔细审题。
热心网友 时间:2022-06-01 07:22
如果同一平面内的四个点在同一个圆上,则称这四个点共圆,一般简称为“四点共圆”。四点共圆有三个性质:(1)共圆的四个点所连成同侧共底的两个三角形的顶角相等;(2)圆内接四边形的对角互补;(3)圆内接四边形的外角等于内对角。以上性质可以根据圆周角等于它所对弧的度数的一半进行证明。
圆内接四边形的对角和为180°,并且任何一个外角都等于它的内对角。
【如图:四点共圆的图片】
图A:四点共圆的图片
四边形ABCD内接于圆O,延长AB和DC交至E,过点E作圆O的切线EF,AC、BD交于P,则有:
(1)∠A+∠C=π,∠B+∠D=π(即图中∠DAB+∠DCB=π, ∠ABC+∠ADC=π)
(2)∠DBC=∠DAC(同弧所对的圆周角相等)。
(3)∠ADE=∠CBE(外角等于内对角,可通过(1)、(2)得到)
(4)△ABP∽△DCP(两三角形三个内角对应相等,可由(2)得到)
(5)AP*CP=BP*DP(相交弦定理)
(6)EB*EA=EC*ED(割线定理)
(7)EF²= EB*EA=EC*ED(切割线定理)
(8)AB*CD+AD*CB=AC*BD(托勒密定理)
判定定理
方法1: 把被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的同侧,若能证明其顶角相等,从而即可肯定这四点共圆。
(可以说成:若线段同侧二点到线段两端点连线夹角相等,那么这二点和线段二端点四点共圆)
方法2 :把被证共圆的四点连成四边形,若能证明其对角互补或能证明其一个外角等于其邻补角的内对角时,即可肯定这四点共圆。
(可以说成:若平面上四点连成四边形的对角互补或一个外角等于其内对角,那么这四点共圆)
托勒密定理
托勒密定理:若ABCD四点共圆(ABCD按顺序都在同一个圆上),那么AB*DC+BC*AD=AC*BD。
例题:证明对于任意正整数n都存在n个点使得所有点间两两距离为整数。
解答:归纳法。我们用归纳法证明一个更强的定理:对于任意n都存在n个点使得所有点间两两距离为整数,且这n个点共圆,并且有两点是一条直径的两端。n=1,n=2很轻松。当n=3时,一个边长为整数的勾股三角形即可:比如说边长为3,4,5的三角形。我们发现这样的三个点共圆,边长最长的边是一条直径。假设对于n大于等于3成立,我们来证明n+1。假设直径为r(整数)。找一个不跟已存在的以这个直径为斜边的三角形相似的一个整数勾股三角形ABC(边长a<b<c)。把原来的圆扩大到原来的c倍,并把一个边长为ra<rb<rc的三角形放进去,使得rc边和放大后的直径重合。这个三角形在圆上面对应了第n+1个点,记为P。于是根据Ptolomy定理,P和已存在的所有点的距离都是一个有理数。(考虑P,这个点Q和直径两端的四个点,这四点共圆,于是PQ是一个有理数因为Ptolomy定理里的其它数都是整数。)引入一个新的点P增加了n个新的有理数距离,记这n个有理数的最大公分母为M。最后只需要把这个新的图扩大到原来的M倍即可。归纳法成立,故有这个命题。
西姆松定理
西姆松定理:过三角形外接圆上异于三角形顶点的任意一点作三边或其延长线的垂线,则三垂足共线。(此线常称为西姆松线)。
判定1
从被证共圆的四点中先选出三点作一圆,然后证另一点也在这个圆周上,若能证明这一点,即可肯定这四点共圆.
推论:证被证共圆的点到某一定点的距离都相等,从而确定它们共圆.即连成的四边形三边中垂线有交点,可肯定这四点共圆.
判定2
1:把被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的同侧,若能证明其顶角相等(同弧所对的圆周角相等),从而即可肯定这四点共圆.
2:把被证共圆的四点连成四边形,若能证明其对角互补或能证明其一个外角等于其邻补角的内对角时,即可肯定这四点共圆。
证法见下
判定3
把被证共圆的四点两两连成相交的两条线段,若能证明它们各自被交点分成的两线段之积相等,即可肯定这四点共圆(相交弦定理的逆定理);或把被证共圆的四点两两连结并延长相交的两线段,若能证明自交点至一线段两个端点所成的两线段之积等于自交点至另一线段两端点所成的两线段之积,即可肯定这四点也共圆.(割线定理的逆定理)
上述两个定理统称为圆幂定理的逆定理,即ABCD四个点,分别连接AB和CD,它们(或它们的延长线)交点为P,若PA*PB=PC*PD,则ABCD四点共圆。
证明:连接AC,BD,∵PA*PB=PC*PD
∴PA/PC=PD/PB
∵∠APC=∠BPD
∴△APC∽△DPB
当P在AB,CD上时,由相似得∠A=∠D,且A和D在BC同侧。根据方法2可知ABCD四点共圆。
当P在AB,CD的延长线上时,由相似得∠PAC=∠PDB,且A和D在BC同侧。同样根据方法2可知ABCD四点共圆。
判定4
四边形ABCD中,若有AB*CD+AD*BC=AC*BD,即两对边乘积之和等于对角线乘积,则ABCD四点共圆。该方法可以由托勒密定理逆定理得到。
托勒密定理逆定理:对于任意一个凸四边形ABCD,总有AB*CD+AD*BC≥AC*BD,等号成立的条件是ABCD四点共圆。
如图,在四边形内作△APB∽△DCB(只需要作∠PAB=∠CDB,∠PBA=∠CBD即可)
由相似得∠ABP=∠DBC,∠BAP=∠BDC
∴∠ABP+∠PBD=∠DBC+∠PBD
即∠ABD=∠PBC
又由相似得AB:BD=PB:CB=AP:CD
∴AB*CD=BD*AP,△ABD∽△PBC
∴AD:BD=PC:BC,即AD*BC=BD*PC
两个等式相加,得AB*CD+AD*BC=BD*(PA+PC)≥BD*AC,等号成立的充要条件是APC三点共线
而APC共线意味着∠BAP=∠BAC,而∠BAP=∠BDC,∴∠BAC=∠BDC
根据判定2-1,ABCD四点共圆
判定5
西姆松定理逆定理:若一点在一三角形三边上的射影共线,则该点在三角形外接圆上。
设有一△ABC,P是平面内与ABC不同的点,过P作三边垂线,垂足分别为L,M,N,若L,M,N共线,则P在△ABC的外接圆上。
如图,PM⊥AC,PN⊥AB,PL⊥BC,且L,N,M在一条线上。
连接PB,PC,∵∠PLB+∠PNB=90°+90°=180°
∴PLBN四点共圆
∴∠PLN=∠PBN,即∠PLM=∠PBA
同理,∠PLM=∠PCM,即∠PLM=∠PCA=∠PBA
根据判定2-1,P在△ABC外接圆上.
希望我能帮助你解疑释惑。
热心网友 时间:2022-06-01 08:56
证:
做辅助线DF⊥AB交AB于点F
△AOB以及△ADF都是等边直角三角形
假设边长AD=AF=1,则有OD=DF=1,AD=根号2
BO=AO=AD+OD=根号2+1
直角△BOD中,由勾股定理得BD=根号(4+2根号2)
△DOE相似于△DBA,其中DO/DB=DE/DA,可得DE=根号2/(根号(4+2根号2))
考虑△DOB和△DEA,恰好有DO/DE=DB/DA,所以△DOB相似于△DEA,角AED=角BOD=90°,故AE⊥BE
热心网友 时间:2022-06-01 10:48
解题思路: 利用相似三角形的性质,根据题目易得∠1=∠2,要证明AE⊥BE
(即∠AEB=90°)可通过证明ΔΒΟD和ΔBEA相似;
且ΔBOE和ΔΒDΑ相似 得到边之比BO:BD=BE:BA
(整理可得BO:BE=BD:BA),且∠1=∠2,即可得ΔΒΟD和ΔBEA相似
从而得∠AEB=∠DOB=90°(即AE⊥BE)
解题过程:
证明: ∵ OA=OB(已知) ,∠DOB=90°(xoy平面坐标系),
∴ ∠ABO=∠BAO=45°,
又 ∵ BD平分∠ABO(已知),
∴ ∠1=∠2= (1/2)∠BAO=22.5°,
又 ∵∠BEO=∠BAD=45°
∴ ΔBOE~ΔΒDΑ (两角对应相等,两个三角形相似),
∴BO:BD=BE:BA,
即BO:BE=BD:BA,
又 ∵ ∠1=∠2(已证),
∴ ΔΒΟD~ΔBEA (两边对应成比例且夹角相等,两个三角形相似),
∴ ∠AEB=∠DOB=90°(即AE⊥BE)
证毕。
热心网友 时间:2022-06-01 12:56
有近路不走,宁绕远路! 四点共圆,就一行,两个推出符号:
∠OEB=∠OAB=45°⇒A、B、O、E共圆⇒∠BEA=∠5=90°
四点共圆不会那也要学啊,永远绕远路,那也不是办法,
热心网友 时间:2022-06-01 15:20
解:在△BOE和△BDA中,∠1=∠2,∠BEO=∠BAD=45°,所以:∠BOE=∠BDA。
因此:△BOE∽△BDA。
也就有:BO/BD=BE/BA。于是:BO/BE=BD/BA。
在△BOD和△BEA中,BO/BE=BD/BA,∠1=∠2,所以:
△BOD∽△BEA。因此:∠BEA=∠BOD=90°。
也就有:BE⊥AE。
热心网友 时间:2022-06-01 18:02
分享一种解法。设α=∠OBE=22.5°,OB=a【分析来看,若能证明∠EOA=α=∠EAO,即可证明EA⊥BE】。作EF⊥OA于F。热心网友 时间:2022-06-01 21:00
如果用四点共圆的话, BD 平分角 ABO的条件是多余的。热心网友 时间:2022-06-02 00:14
可以用反证法热心网友 时间:2022-06-02 03:46
四点共圆本质上是三角形相似演变过来的,故本题可以用三角形相似来证明,证明如下
见图:
热心网友 时间:2022-06-02 07:34
做出来了,稍微难一点,利用相似去做。整个题目突破点在于角平分线的性质,联想到做另一条的垂线,通过相似之后的比例转换,来推导出另一组三角形相似。从而原题得证。附图做法。这几天百度知道更新没法答题。
热心网友 时间:2022-06-02 11:38
过O作OF⊥BD交BD于F。热心网友 时间:2022-06-02 16:00
解题思路:利用角平分线和∠OEB推导出BDA和ODE两个三角形相似,得到对应的线段长度关系,再利用对顶角,得到BOD和AED两三角形相似,即可证明∠AED为直角,得出垂直关系。热心网友 时间:2022-06-02 20:38
(1)作辅助线:OM⊥OE交于BD于点M;热心网友 时间:2022-06-03 01:32
既然放在坐标系里