∫(+∞,1)x/(1+x^2)^2dx,求广义定积分
发布网友
发布时间:2024-10-22 20:31
我来回答
共1个回答
热心网友
时间:2024-10-23 20:18
let
x=tany
dx=(secy)^2 dy
x=1, y=arctan1
x=+∞, y= π/2
∫(1->+∞)x/(1+x^2)^2dx
=∫(arctan1->π/2) tany/(secy)^2 dy
=∫(arctan1->π/2) sinycosy dy
=(1/2)∫(arctan1->π/2) sin2y dy
=(-1/4) [cos2y] (arctan1->π/2)
=1/4 + (1/4)cos(2(arctan1))