...四个点,∠APC=∠CPB=60°,过点a做⊙O切线交bp延长线于d
发布网友
发布时间:2024-10-22 03:15
我来回答
共1个回答
热心网友
时间:2024-11-11 05:05
(1)证明:作⊙O的直径AE,连接PE,
∵AE是⊙O的直径,AD是⊙O的切线,
∴∠DAE=∠APE=90°,
∴∠PAD+∠PAE=∠PAE+∠E=90°,
∴∠PAD=∠E,
∵∠PBA=∠E,∴∠PAD=∠PBA,
∵∠PAD=∠PBA,∠ADP=∠BDA,
∴△ADP∽△BDA;
(2)PA+PB=PC,
证明:在线段PC上截取PF=PB,连接BF,
∵PF=PB,∠BPC=60°,
∴△PBF是等边三角形,
∴PB=BF,∠BFP=60°,
∴∠BFC=180°-∠PFB=120°,
∵∠BPA=∠APC+∠BPC=120°,
∴∠BPA=∠BFC,
在△BPA和△BFC中,,
∴△BPA≌△BFC(AAS),
∴PA=FC,AB=CB,
∴PA+PB=PF+FC=PC;
(3)解:∵△ADP∽△BDA,
∴(比例式),
∵AD=2,PD=1,
∴BD=4,AB=2AP,
∴BP=BD-DP=3,
∵∠APD=180°-∠BPA=60°,
∴∠APD=∠APC,
∵∠PAD=∠E,∠PCA=∠E,
∴∠PAD=∠PCA,
∴△ADP∽△CAP,
∴(比例式),
∴AP2=CP•PD,
∴AP2=(3+AP)•1,
解得:AP=或AP=(舍去),
∴BC=AB=2AP=1+.
解析:
(1)首先作⊙O的直径AE,连接PE,利用切线的性质以及圆周角定理得出∠PAD=∠PBA进而得出答案;
(2)首先在线段PC上截取PF=PB,连接BF,进而得出△BPA≌△BFC(AAS),即可得出PA+PB=PF+FC=PC;
(3)利用△ADP∽△BDA,求出BP的长,进而得出△ADP∽△CAP,则=,则AP2=CP•PD求出AP的长,即可得出答案.