...>0﹚的图像关于直线x=π/3 对称,且fπ/12) =0,这w的最小值为_百度...
发布网友
发布时间:2024-10-24 16:47
我来回答
共2个回答
热心网友
时间:2024-11-07 01:38
解析:
已知函数 f(x) =2sin ﹙ωx+Ψ﹚﹙ω>0﹚的图像关于直线x=π/3 对称,则可知:
当x=π/3时,函数f(x)取得最值
故有:ω*(π/3)+Ψ=kπ+ π/2,k属于Z
即Ψ=kπ+ π/2 -ω*(π/3)
那么: f(x) =2sin ﹙ωx+Ψ﹚=2sin[ωx+kπ+ π/2 -ω*(π/3)]
又f(π/12) =0,所以有:
2sin[ω*(π/12)+kπ+ π/2 -ω*(π/3)]=0
即sin[ω*(-π/4)+kπ+ π/2]=0
解得:ω*(-π/4)+kπ+ π/2=nπ,其中n,k属于Z
ω*(π/4)=(k-n)π+ π/2
ω=4(k-n)+ 2
因为n,k属于Z,那么k-n属于Z
而ω>0
所以:k-n=0时,正数ω的最小值为2。
热心网友
时间:2024-11-07 01:38
f(x) =2sin [ω(x+Ψ/ω ﹚]
因为f(x)平移后的对称轴为-Ψ/ω
而直线关于x=π/3对称
所以-Ψ/ω=π/3 ……(1)
又f(π/12) =0可知
πω/12=kπ k为∈N……(2)
由1,2式分析解得w最小为6