Ubuntu18.04系统下最新版GPU环境配置详细教程
发布网友
发布时间:2024-11-28 23:09
我来回答
共1个回答
热心网友
时间:2024-11-28 23:32
在Ubuntu 18.04系统下配置深度学习GPU环境,主要是涉及显卡驱动安装、Cuda版本安装与cuDNN的安装。以下详细步骤帮助实现高效且简洁的GPU环境配置。
首先,要确保安装最新的图形驱动。使用PPA源的方式添加Graphic Drivers源,执行命令更新系统。
系统自动查找并推荐驱动版本,通常推荐使用最高版本的nvidia-driver,如nvidia-driver-440。利用命令行安装选定的驱动版本,确保驱动安装成功。
驱动安装完成后,重启计算机使驱动生效。重启后,通过命令检查驱动是否安装成功,应显示显卡型号及显存利用情况。
接着,安装Cuda 10.0版本。访问英伟达驱动安装指引网站,选择相应的Linux、x86_64、Ubuntu、18.04系统版本进行安装。下载对应版本的Cuda安装文件,并按照网站指示进行安装。
安装Cuda完成后,需要重启电脑。重启后,通过命令验证Cuda是否成功安装,应显示GPU相关信息。
最后,安装cuDNN。同样通过英伟达开发者网站下载cuDNN,注册并登录账号后,选择与Cuda版本匹配的cuDNN版本下载。将下载的文件放入指定文件夹并打开终端,执行相应的安装命令,完成cuDNN安装。
测试cuDNN安装是否成功,通过命令验证。若显示“Test passed !”,表示安装成功。
至此,深度学习GPU环境配置完成。现在可以愉快地进行深度学习框架,如TensorFlow的安装与应用。
配置完成意味着准备好进行深度学习的学习和研究。请务必指出文中可能存在的错误,以便不断优化和提高配置的严谨性。同时,如果有更好的实现方法或优化建议,欢迎您分享。