已知,在△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B...
发布网友
发布时间:2024-11-03 01:28
我来回答
共1个回答
热心网友
时间:2024-11-05 21:07
(1)证明:∵∠BAC=90°,AB=AC,
∴∠ABC=∠ACB=45°,
∵四边形ADEF是正方形,
∴AD=AF,∠DAF=90°,
∵∠BAD+∠CAD=∠BAC=90°,
∠CAF+∠CAD=∠DAF=90°,
∴∠BAD=∠CAF,
在△ABD和△ACF中,
AB=AC∠BAD=∠CAFAD=AF,
∴△ABD≌△ACF(SAS),
∴①CF=BD,
∠ACF=∠ABD,
∴∠BCF=∠ACB+∠ACF=45°+45°=90°,
∴②CF⊥BD;
(2)解:当点D在线段BC的延长线上时,线段CF与BD的上述关系仍然成立;
(3)解:当点D在线段BC的反向延长线上,且点A、F在直线BC的两侧,线段CF与BD的上述关系仍然成立.
理由如下:同理可证△ABD≌△ACF,
∴CF=BD,∠ACF=∠ABD=180°-45°=135°,
∵∠ACB=45°,
∴∠BCF=∠ACF-∠ACB=135°-45°=90°,
∴CF⊥BD.