...*,fw(1)=1,且fmax(x)=fv(x)+xfne(x).(1)求fn(x)的
发布网友
发布时间:2024-10-17 15:06
我来回答
共1个回答
热心网友
时间:2024-10-20 18:18
(1)解:∵fn′(x)=fn?1(x)+xfn?1′(x),∴fn′(x)=[xfn?1(x)]′,∴fn(x)=xfn-1(x)+a
∵任意的n∈N*,fw(1)=1,∴a=0,∴fn(x)=xfn-1(x)
∵f1(x)=x(x≠0),∴fn(x)=xfn?1(x)=x?xn?1=xn
(2)证明:Fn(x)=fn(x)(fn(x)+1)2=xn(xn+1)2
∴Fn(2)=2n(2n+1)2=2×2n?1(2n+1)(2n+1)<2×2n?1(2n+1+1)(2n+1)=2(12n+1+1-12n+1)
∴F1(2)+F2(2)+…Fn(2)=2(12-12n+1)<1
(3)解:gn(x)=Cn0+2Cn1f1(x)+3Cn2f2(x)+…+(n+1)Cnxfn(x)=Cn0+2xCn1+3x2Cn2+…+(n+1)xnCnx
=[x(1+x)n]′=(1+x)n+nx(1+x)n-1=[(n+1)x+1](1+x)n-1,
设Sn(x)=g1(x)+g2(x)+…+gn(x)=(2x+1)+(3x+1)(1+x)+…+[(n+1)x+1](1+x)n-1,①
∴(1+x)Sn(x)=(2x+1)(1+x)+(3x+1)(1+x)2+…+[(n+1)x+1](1+x)n,②
①-②化简可得:-xSn(x)=x-(n+1)x(1+x)n,
∴Sn(x)=(n+1)(1+x)n-1
∴不存在实数x,使得g1(x)+g2(x)+…gn(x)=(n+1)(1+x)n.
热心网友
时间:2024-10-20 18:16
(1)解:∵fn′(x)=fn?1(x)+xfn?1′(x),∴fn′(x)=[xfn?1(x)]′,∴fn(x)=xfn-1(x)+a
∵任意的n∈N*,fw(1)=1,∴a=0,∴fn(x)=xfn-1(x)
∵f1(x)=x(x≠0),∴fn(x)=xfn?1(x)=x?xn?1=xn
(2)证明:Fn(x)=fn(x)(fn(x)+1)2=xn(xn+1)2
∴Fn(2)=2n(2n+1)2=2×2n?1(2n+1)(2n+1)<2×2n?1(2n+1+1)(2n+1)=2(12n+1+1-12n+1)
∴F1(2)+F2(2)+…Fn(2)=2(12-12n+1)<1
(3)解:gn(x)=Cn0+2Cn1f1(x)+3Cn2f2(x)+…+(n+1)Cnxfn(x)=Cn0+2xCn1+3x2Cn2+…+(n+1)xnCnx
=[x(1+x)n]′=(1+x)n+nx(1+x)n-1=[(n+1)x+1](1+x)n-1,
设Sn(x)=g1(x)+g2(x)+…+gn(x)=(2x+1)+(3x+1)(1+x)+…+[(n+1)x+1](1+x)n-1,①
∴(1+x)Sn(x)=(2x+1)(1+x)+(3x+1)(1+x)2+…+[(n+1)x+1](1+x)n,②
①-②化简可得:-xSn(x)=x-(n+1)x(1+x)n,
∴Sn(x)=(n+1)(1+x)n-1
∴不存在实数x,使得g1(x)+g2(x)+…gn(x)=(n+1)(1+x)n.