海涅劳斯定理内容
发布网友
发布时间:2022-05-07 13:30
我来回答
共2个回答
热心网友
时间:2023-11-02 08:27
应该就是梅涅劳斯定理吧?
梅涅劳斯(Menelaus)定理是由古希腊数学家梅涅劳斯首先证明的。它指出:如果一条直线与△ABC的三边AB、BC、CA或其延长线交于F、D、E点,那么AF/FB×BD/DC×CE/EA=1。
证明:
过点A作AG‖BC交DF的延长线于G
AF/FB=AG/BD , BD/DC=BD/DC , CE/EA=DC/AG
三式相乘得:
AF/FB×BD/DC×CE/EA=AG/BD×BD/DC×DC/AG=1
它的逆定理也成立:若有三点F、D、E分别在的边AB、BC、CA或其延长线上,且满足AF/FB×BD/DC×CE/EA=1,则F、D、E三点共线。利用这个逆定理,可以判断三点共线。
参考资料:http://zhidao.baidu.com/question/42624791.html?si=1
热心网友
时间:2023-11-02 08:28
lim[x->a]f(x)=b存在的充要条件是:对属于函数f(x)定义域的任意数列,且lim[n->∞]an
=
a,an不恒等于a,有lim[n->∞]f(an)=b
海涅定理是沟通函数极限和数列极限之间的桥梁。根据海涅定理,求函数极限则可化为求数列极限,同样求数列极限也可转化为求函数极限。因此,函数极限的所有性
质都可用数列极限的有关性质来加以证明。根据海涅定理的必要重要条件还可以判断函数极限是否存在。所以在求数列或函数极限时,海涅定理起着重要的作用。
海涅定理是德国数学家海涅(heine)给出的,应用海涅定理人们可把函数极限问题转化(归结)成数列问题,因而人们又称它为归结原则
热心网友
时间:2023-11-02 08:27
应该就是梅涅劳斯定理吧?
梅涅劳斯(Menelaus)定理是由古希腊数学家梅涅劳斯首先证明的。它指出:如果一条直线与△ABC的三边AB、BC、CA或其延长线交于F、D、E点,那么AF/FB×BD/DC×CE/EA=1。
证明:
过点A作AG‖BC交DF的延长线于G
AF/FB=AG/BD , BD/DC=BD/DC , CE/EA=DC/AG
三式相乘得:
AF/FB×BD/DC×CE/EA=AG/BD×BD/DC×DC/AG=1
它的逆定理也成立:若有三点F、D、E分别在的边AB、BC、CA或其延长线上,且满足AF/FB×BD/DC×CE/EA=1,则F、D、E三点共线。利用这个逆定理,可以判断三点共线。
参考资料:http://zhidao.baidu.com/question/42624791.html?si=1
热心网友
时间:2023-11-02 08:28
lim[x->a]f(x)=b存在的充要条件是:对属于函数f(x)定义域的任意数列,且lim[n->∞]an
=
a,an不恒等于a,有lim[n->∞]f(an)=b
海涅定理是沟通函数极限和数列极限之间的桥梁。根据海涅定理,求函数极限则可化为求数列极限,同样求数列极限也可转化为求函数极限。因此,函数极限的所有性
质都可用数列极限的有关性质来加以证明。根据海涅定理的必要重要条件还可以判断函数极限是否存在。所以在求数列或函数极限时,海涅定理起着重要的作用。
海涅定理是德国数学家海涅(heine)给出的,应用海涅定理人们可把函数极限问题转化(归结)成数列问题,因而人们又称它为归结原则
热心网友
时间:2023-11-02 08:27
应该就是梅涅劳斯定理吧?
梅涅劳斯(Menelaus)定理是由古希腊数学家梅涅劳斯首先证明的。它指出:如果一条直线与△ABC的三边AB、BC、CA或其延长线交于F、D、E点,那么AF/FB×BD/DC×CE/EA=1。
证明:
过点A作AG‖BC交DF的延长线于G
AF/FB=AG/BD , BD/DC=BD/DC , CE/EA=DC/AG
三式相乘得:
AF/FB×BD/DC×CE/EA=AG/BD×BD/DC×DC/AG=1
它的逆定理也成立:若有三点F、D、E分别在的边AB、BC、CA或其延长线上,且满足AF/FB×BD/DC×CE/EA=1,则F、D、E三点共线。利用这个逆定理,可以判断三点共线。
参考资料:http://zhidao.baidu.com/question/42624791.html?si=1
热心网友
时间:2023-11-02 08:27
应该就是梅涅劳斯定理吧?
梅涅劳斯(Menelaus)定理是由古希腊数学家梅涅劳斯首先证明的。它指出:如果一条直线与△ABC的三边AB、BC、CA或其延长线交于F、D、E点,那么AF/FB×BD/DC×CE/EA=1。
证明:
过点A作AG‖BC交DF的延长线于G
AF/FB=AG/BD , BD/DC=BD/DC , CE/EA=DC/AG
三式相乘得:
AF/FB×BD/DC×CE/EA=AG/BD×BD/DC×DC/AG=1
它的逆定理也成立:若有三点F、D、E分别在的边AB、BC、CA或其延长线上,且满足AF/FB×BD/DC×CE/EA=1,则F、D、E三点共线。利用这个逆定理,可以判断三点共线。
参考资料:http://zhidao.baidu.com/question/42624791.html?si=1
热心网友
时间:2023-11-02 08:28
lim[x->a]f(x)=b存在的充要条件是:对属于函数f(x)定义域的任意数列,且lim[n->∞]an
=
a,an不恒等于a,有lim[n->∞]f(an)=b
海涅定理是沟通函数极限和数列极限之间的桥梁。根据海涅定理,求函数极限则可化为求数列极限,同样求数列极限也可转化为求函数极限。因此,函数极限的所有性
质都可用数列极限的有关性质来加以证明。根据海涅定理的必要重要条件还可以判断函数极限是否存在。所以在求数列或函数极限时,海涅定理起着重要的作用。
海涅定理是德国数学家海涅(heine)给出的,应用海涅定理人们可把函数极限问题转化(归结)成数列问题,因而人们又称它为归结原则
热心网友
时间:2023-11-02 08:28
lim[x->a]f(x)=b存在的充要条件是:对属于函数f(x)定义域的任意数列,且lim[n->∞]an
=
a,an不恒等于a,有lim[n->∞]f(an)=b
海涅定理是沟通函数极限和数列极限之间的桥梁。根据海涅定理,求函数极限则可化为求数列极限,同样求数列极限也可转化为求函数极限。因此,函数极限的所有性
质都可用数列极限的有关性质来加以证明。根据海涅定理的必要重要条件还可以判断函数极限是否存在。所以在求数列或函数极限时,海涅定理起着重要的作用。
海涅定理是德国数学家海涅(heine)给出的,应用海涅定理人们可把函数极限问题转化(归结)成数列问题,因而人们又称它为归结原则