发布网友 发布时间:2024-10-13 23:58
共2个回答
热心网友 时间:2024-10-21 23:42
当1/x=kπ时,f(x)=1/x*sin(1/x)=0。
当1/x=kπ+π/2时,f(x)=1/x*sin(1/x)---->+∞。
此问题是无穷大乘有界变量,这类问题要看有界变量是否包含为零的时内候,常数零与无穷大容量乘积还是等于零的。该问题中当x趋于0时sin(1/x)是有等于零的可能的。所以该问题极限不存在,且无界。
当1/x=kπ时,f(x)=1/x*sin(1/x)=0。
当1/x=kπ+π/2时,f(x)=1/x*sin(1/x)---->+∞。
扩展资料:
极限的求法有很多种:
1、连续初等函数,在定义域范围内求极限,可以将该点直接代入得极限值,因为连续函数的极限值就等于在该点的函数值
2、利用恒等变形消去零因子(针对于0/0型)
3、利用无穷大与无穷小的关系求极限
4、利用无穷小的性质求极限
5、利用等价无穷小替换求极限,可以将原式化简计算
6、利用两个极限存在准则,求极限,有的题目也可以考虑用放大缩小,再用夹逼定理的方法求极限
7、利用两个重要极限公式求极限
8、利用左、右极限求极限,(常是针对求在一个间断点处的极限值)
9、洛必达法则求极限
热心网友 时间:2024-10-21 23:44
函数 sin(1/x) 在 x 接近 0 时的行为表现出了振荡性质,即随着 x 的减小,1/x 增大,而 sin(1/x) 的值在 -1 和 1 之间不断变化,没有固定的趋势。这种现象导致 sin(1/x) 在 x 接近 0 时没有极限值。