...之1为底x+1的对数的图像 x-1的绝对值的图像 2的x+1次方的图像_百度...
发布网友
发布时间:2024-10-14 08:19
我来回答
共2个回答
热心网友
时间:2024-10-14 09:29
lz请看图片
x的-2次方图像
以2分之1为底x+1的对数的图像
x-1的绝对值的图像
2的x+1次方的图像
热心网友
时间:2024-10-14 09:26
\!\(\*
GraphicsBox[{{}, {},
{Hue[0.67, 0.6, 0.6], LineBox[CompressedData["
1:eJwV1Xk8FPgfBnBEJCG3dV8hNzmq5fslOliS0lJLUWxULIU2t6UVSkS52Zyp
VKhc9UGS5BhyhGHGPcYYY9wj/Pr98byef95/P4+Cu6+DBwcbG1vrz/y/tZEY
dXt7G2bqZ0TZ2AjId10pdp21DezPVYq5uQjoVYXevsXlbbBLGXm8l5eA9NVs
3admt+GcTGO2pggBGe+NHmzr3wZpv+se4WoEhMcXWtNfbsPxAI2D6acIyOHf
9mcGF7Zh66XSQEkhAQV1Rl//88MWWEk2ezx07EI9PbupDW6bEBD/TjCU1Y1k
6n1FjKV/AKFchoOjrge9udrEJTDMgugAsd2ylX3oYoIeYyBqHUQ/JvQ91RxA
a8nBsYDWQCwpPX2TOISmpRuoRw+tQYyXSmbKzBDqK9pp23FgDe7zCKkeWBlC
FTVJe4fV1+DRgx2bCQJE5DNWnMESXgOjaHpwkQURjev1PDekrIK9QEhVeCkR
dRA0u549WIVepaPFnJHDKJ9/RDJtdAWuRg9WWNqQUPJ5xH2QuAJa1/i0N5xJ
KKokb2mgbwXYHcd4666QkLvFpU6pthX47V2xsMsdElIMpETnvl2BGMrFQJlG
EnoyzJwvil8BA7GmfQQZMsp7zt38xvCnP7udGpxJRlnWev7f7i7DZ+/NHy9K
RpHybutWQvQyTF8tl6K8GkXPvrordoQvw3J+4oZq9Siq+S2luyVgGbweWYlU
fxlFA3ar+h/clsG3J8VcYXYUiZ1+v1hycBl8WMEX+XXGUOL5EwFhM0ugVC1V
/k/tGIq65nZL/cQSHLM+I6VPGUcj912zao4sge+1SU0ycxwden2+3sZsCUZG
Wd8fbY4j5rIjj4/BElQp1qvICk8gt3DrtHKZJfgx3/E41WwC4WSDqsPMRbDA
zSa6jyfQ1juuNdvMRRhUS9lyPjmJgneUBvnPMaEiI/360PAU8kl33XmRwgTX
LfdyBeoUctcRTrUdZwLjO3XIb2UKWZ8PKVcbYIJsYD+3rsA0kqiwmxtpYkLR
5bcMZfNpVOm+6G6TxYSF/ZfzWUXTiN7wq52yDRMks0UeF96mILeITuW+kgX4
88jemFeWVHR2INdsOH8BHvqRcyJPU5G1/l9OEzkLoPo80uqCOxUdmBBMYKYs
gP1uQX8cQUU8xx0W+SMXIDAmbzCzjorKBHobjjkvwLVDPvDReBZt5Ay6Vu9a
gAqzMoaFCQ0xVktv1XMuwHC3WG3jcRqasA9O/rzNgNo/2ThOOdNQB4d0c+8y
AzalnU+k36ahJ54uWsxRBtzIKMsdfE9Dx7XJG/trGDDwJeCrzrE5lPp+Mi3L
mwEqk2r/FXjQkeutjDBjDwZc+2q65+nfdKRmcPJy9wUG6HmWWzXco6Oakiod
HkcGTArditZ6S0cjD+ObbyAGVMiqy69xzyNVb70laxEGWAYcTrv+ch75a7Fy
mMHz4DgVWmn/LwNx5l/yVvObhxaKOZQmM9AjiXZDV895aI3tDhfMYaDaHXlt
X+zn4UnFmvt25U8/aMXKU5mHxpFvwdfGf/o7SY4nO+lwX5GzNNliAdWQ1Pie
K9KBe+wJxPEyUciv7C8yJOiwoqrbmiPGRKbpA7Z3+ekw/wt1/YMiE9U7xCV6
suaA29eYV/kwE33+NCuk0D0HPuxx76OuMVHPszLJR5Fz0HIq8eh/XUxEDzqg
GkGmge3ItypS4SJ61cPX4tNHA+0zU/oZFYvIT2/yiksbDa6LB4pealhES9TU
0kNVNKhTWbwsP7yINlxWtZYTaRBmdvuqjegS4rGsOeCNaFDWC+EBsUtISRBb
nMmZhfk9T9Yqby+j+7qjt70fzoKrzJfUqvhltGYfVREROwt+69r+hKxl1JbU
pPzCfxZeTZR6mcIyuil8gnvnsVmoeqxLEeBaQc1iDm3v5qlwquD3gsqUFeQt
c/mslDkVHHwfZK02raIeU65EPSMqTEQ5lzZ/X0VmrkWfj2lQ4UhkWkwZbRUJ
51JMbopSgSj7xvqLyBqqk78u1T4zA0sfzct0PNcQv3IgOSx5BnzvXWVN7llH
5ftjvcfGKeDV3uph6s9Ccl0XqzUGKGCA0/0F77JQQtBBnoAOChAcfCXY81jI
o4layF1NgS3TFz8Od7CQhKvtqOZ9CrTcdhmR0dxAoUlCTkEmFMj2+HCoYW4D
HV/LsuK7Nw3TGrvPS8Ztojc5ASmOUdMg65RG3124iRSt7MZzgqZhyH7aX6l+
E20kbUfouU/D45tLfzSubKIyDfe6s8bTcPzI4SOfPbaQyAVVg/9GpyBlOoqg
YbONSJ9eyxsZTcGNV34ltRlsOOT0uqWJ5hQI3THjevuUDUuMYq9DilNw5bTL
y6YqNmz/o/O1Gf8UGKVTw+T62XC9Pt3i2NQktBQrq3SKsOO83P0eTo8m4aLm
L8EmKezY/e/8p7dXJuB3LY8exwIOvLVztj2ENgG+z1enVN9y4IwUfWbY2AQI
33V/KNzCgbtfNhz6p2MCqjZrw0xoHPjIFOlrfNEEyEQHSX8w3IGVT0vTs85O
gJydPnOyfQee1EzVh7fjoF8wgnREuPD+sEI65dk4KIkpy/tqcGGfzjelQv+N
Q8T6YEKvBRde8+tT9Iwfh/vWau7i/lyY95248J6L41Cb+/j+rW4urGuesXhu
1zhImVu+Y8vciYMdcytXzo9BXrDA+RFbHlxf9PIv+VNjQCoY5XvqzYM510DT
+ugYhJ67u7P4Xx58P4NckK07BvuUd9aaNfLgPJJCqiXXGAjTdIapB3fhZq+C
gOSyUXCxvJpdYsCL94Y9NdJmHwXdrHyPwjN8+M5btRbBVTLcCN3uDwrkwyx6
sfMijQy0stfbd9L48NiFopCq72RIFT7zzmWYD5eb5zdavCJD6KK14qbXHuzA
lW33+wUyhNz5/XVCIj9uNpUmH3Qkg9STpWL/N/z4UGCmn7QNGfqc/U/kDvFj
xen0lFEjMiy9LD/ZqSaAF1seDV7lJ4PbqV7DnGYBrCqp0M4WTIIsUkGRXawg
FoyTY3zyJEHI/a/vnmQL4jWWjHC8Awk6x7LV5SsEcQvxF2fR/SQYY/UPp40I
4it5IpPqAyOQKCmRdc94Ly5V5dl0MB6Bk/UbnTMLe7Gm0bxm4SIRjLvFDGnx
wthTOzy8epgIDjruZ4qfCuPcfQLd7Z+J8PLh3ZCiz8JYSFwnaCWTCMqu5zRu
corg1VWfhmOWRDDcdePB5UgR3FhNd6SmDIHCTb6Fi3dF8Y/XYSVbYUMwwXwa
8OmZKDYs5d8Q8hoCuaT8nJAOUVySoZ132HQI0qsseaZFxPC9YB9qwuQgIH+R
062FYtjJlB6mYzQI2QqmV1u/i+Nkw7CuI/KDkHmJdoPEJoG/avErO/EOQsX6
frKzugQ2k9X+EjEyAA2+f1hFB0tgpe3rwt13BoArvdSwT1kS0+vnim/2f4e+
pBepNQm/4H8s5wjVt/qhid5x/Ox7Gfzz004euNQPQiFvsMaSDGazne0os+2H
W84xXmkasjjEcaYtX7Ef/mBHWpZZsjjQc7LlXlsfvMeFkwoxcvhK7HC9m3wf
dFwKMUyslcdFCURE5O2DXfFeBBuiPJ54MPTh7HIvdApKEa9symO39IE6m9Ze
sNplYtaKFfC50t4qw5u9MM6Xm+3YpoB/a2t/taulB05zEmc41xRxHKFNJ7q8
B8T/1tFPkFPCLT1fy7ayekDxVVxc4jElbDX85fmiXw+Ea1hnCqUrYTP6p5Jh
qR5okpRetrJQxrqCH/Je+36DTlmHG54vVbCPyHs5zXPfIHyuObeOpIKfS9Tl
FFl+gwusINk3gvuwukJNVqbkN7DjzopLu7kPK+q/TYv52A2ffDBnqKUqFj1T
9sBZvBvYL3/recStjsv3xddY7ej+ud8lu6KQOrZf/3NCb74LKA0SAeq31HFc
joIJ7+cuiAgQtKyZVcdblBRSTWAXfD0/ctSKuB9PhQZrS/cRwJfzV/qpKU38
j72TE08jAcIiJcRrNbSwvJJh1NILApxI2BMm56+Fz7XQe9tiCNB9xk1zjl0b
dwi5h4YaEkAxZi5TTVsH+5xMSnuv3gmR1kTS6oguLlmypqWyd0KsSFB/M68e
HkvnxD4DHWASL2dvbqyHz04ETcve7YAEwU3q0WQ9jP52NYqgtAM5XJd/014f
35aViHOqb4cQC6UPiVH6uPJj17BuWju4p/1bT6vUx2r8VjGjx9pBxYWgIi5t
gHenS/9FeN0GHnqh3DemDPD/ADegqP8=
"]], LineBox[CompressedData["
1:eJwVlWk4FHzDxSdLJCQh+1ZEIWm3nX9pEalIFCKFJBQttkp0p01IhZabsuZt
IYTcKC1E29iXbGMZDI0ZjGUa5un9cK7z5Xw613V+R+PoKTtPAQqF8uWv/t/r
LgnfjXn9DZ5rLoqcoa8lgZd3Fe1o/IaiD4wGgzdriZbJoW9v9b5DIcnvQQnW
kujc4MmUX9+x90B36rcjRsTpUZGV7+afaLpnVrLghyEpCEajludPUF0p651T
DImkQ5VbV9xPjKqHa/sHGJIKqeazdoM/Mc+cPlK11JDIWITtfWxNhcQLiYX/
tRqQijXvZELcqfg0+eNj0jUD4q8u2HYgiIq80Hk1pRsMyJfZmx6L0qjY/f2G
eFmSPgkrfhgSyaViQyKTNuKjR3SyOs3dpGqRc2D/JitNPdJwX1PIVLsWqYlG
z0rbVhGDM/8Xw7GtReaHavGve1aRHv2SNO/sWjzK4lbxtq4ku9Jav+85WAdP
n+0rYx11COvqK6/PfnUY+t7Ux1PVIUneV/gmV+pwidnEMhhYQQb19dfovqrD
XNkWVm3ICnK9+PI9QaF61LfER77J0iZfvq9wLs6ph+6LUVnzZVrkdC5v3OBz
PUSOufwXwFlO5O/WRme01eP2KeukzV+WE++DYeXxwg3Q8AyRvnBqORHt/aHh
59yAsnjvuzc+LSM7p88Naog0QnTDgYttUZqE2WYVkaTciNu7uFNb3DVJQpma
4iKjRtReFjmlZKpJ6JHV1jyXRiyyOrVaZVyDREmo5DTlNSLP6xNrlZcGqdT8
dO6WaxO8L2SypdzUib/wA0mBs01Ye5a1tx7qRG7QLyv4RhPMBi5/ZqqrE6+X
S1s9C5oQlObk5/hFjczfdNKUiDXD4j92zLoOVbLdRlqQ86YZQfs8BiKXq5AY
9wXsmepmLOnrnrk5rkxazlG65jqaMSdhtljyozLxSWaWiM5vgZnmYcalY8ok
ZrQmUNmhBR3Ju6a6spVIy50rPRaTLTCKV9lwyFqRaGSGUi3FWiEWGljtqqFI
fEoCym1UW7H6yKG7X6YUCK/H7aHjjlZo//rR/DFDgWisM7U7mdCK8YQ/tzbO
VyA+TRMV8RvaENjiVifbspTkM4ZzEq3awCk5QKvPX0p4cz3/PnZtg/m53x59
sUtJzIrakMyoNjStuDk4bfk3H/xyTUlTG679WRzRWC5HeIpeT2nnf+HM8Niy
+8WyJNat+bJhUTtyr8pnxXUuIVEjpqB/a4eq7v3DWe+XkEshqbOPetpx4txm
33lpS4j/Xb9QEckObDf51/+C9xKyp0rwbKdHB96aT70OnpQmkqsNj0dLd0L9
65XQQRVpMr/0vtZWnU5Uny6waheUJnOWf3qnzDrhVBGkJspYTJhHK48cO9EJ
fsqmg8JFi8mPBBcn4/edYEqJil/dv5jEzF23GfTrgsyCR2HyCVIk6hZzYfKV
Lthmp6vtCJcil+Tta/Y/6EJwoH9ZqrcU8TdS2/nuUxdG87L66SZSZEW+k/pX
iW48TGi6qli9iIgMsBRSPbqxLHviZkOYJKnaoyKxT5oG7XudSv1K4kTGgCYX
qEyDz4/BQ+ncheSIRIb6PW0aZK+LBiW3LiTcr3rrWoxpMBuP0tqStJDo7TJ1
PnKMBhPj/dFr5BeSOAvn7NMFNJzPuLTeRlOMOG16sP2OQw/uBwQZGLiIksyl
h/fmH+nBZHjMq4NbRMn4pPqhRp8eMI5yfXO0RUn0m2e+CuE9qNr2VKObLULe
GRXffZrVg9Y4Y4ltN0XIcv1m2uvpHjiMyZHKD/PJbw3ZS3UPeyHyM+q01z5h
sinsaUBFei9uez4O6zAWJpEN+p65r3px/PdRhXNawkTu2o7dMR96oRhyXET4
jxAxHwlStGL0YkVDZvaTLCESW9hWWLG5DxKFi0bi5guRNdZPRnNb+uCl9+ny
h1YBciFdrzelpw+1x4PsW6oESOVscVPMSB+01SozRAoFiFNubZkvpR9acfGU
vHgBEikrGK2j048ZGeWThjYCpL7LU+dJUD+8kocUX1TOI+fOrnKPlaOj0CCR
f6aGQuTERksdNOiwOW5fqVxCIcUpefKqenQ0Wyq5dGRTCK9mM/XFFjpUd0Sb
ZtygkEgNS9T40vHgR0yXlRWFxPzwUBH+SIf9hQBKbAofmTrJraGnBpAb5ba9
rmEWluXu67eGDiD/MfacfTuLof1adxZcHcBL/UKmSfIs9MJfWCY9HMCjHsU+
Y+9Z5DWWFL35PICZlclbWbM8lEc232cpDaK36Vg1fzUPze1Sdl5fBrF7cXjm
/JdcWN3ybDlbN4gL5/74+yVyUbq5xPVK+yA64pd4MyO4eJJw7OQT1iBSTW0t
zB258N5X+E+b/BCWMiWXLBbkgvvRuWjPiSHoKT755uY2A+XnmcobxRiIjtix
KlF3GjGH/qRul2EAg2ra03LToIju07VXZWB4nXOKv9A0+jxm1gcYMWBeLH/j
UdcUXqru3vvciQEX2v4X7IQpmMezI9SeM9A1oBl7ZsEUjoSYDojsHoaRXtkN
Ho+DlR5fGpkOw/DS/lB+fpiD8T32nxrdh7Hj5YMO4TYOopb7Pk0LGoaesrz9
0SIOXvx85Iy0Yay+TYmXOsPBjNafn+e5w2D/HorRZk4gvu5tcf+zEZwhuyq8
xsbhUrY961v+CBpM6aFbe8eh9az2fn75CJKcCk6ubhhH8cWhwIiGEVD3tdw0
LRxHp46CvgrlN/iBD9nqYeNYGR781N7xNx7PxcXyRMbxcdXGmx+FmciVob09
pD8G19X2aexFTGSJ0reIa4xh2iigVE2RicirqhZfZcagZ/ycGWbAhNphhp8/
j417lmr71zkyccr44L2d39jw8hRRznjGRKIab2aDPxuiKc0vo6xHkZdbuCa5
hAXtBaWD6ZYsqBfoRM30MTFWZeCTasPCvPrON9J1TJRHPR1OsWOhK2hik9k7
JhyErjEfurCg6fa57/MDJq7ybSfiTrOwZW3OzbS9TPRxBvgXklhId21ae6n8
N1J7liw9MMhCdaTnFp2/vamUntwufJ0Nyy3Or49lMSCjwOX632bjaVreB04C
A+Lnr+e2xLMx+EaXkhjFAG91htKLf9m4vJ5VMN+Lgba0TrZdPhtz6d4CD7QY
SLhlm/ykk437jnG+IVlDkHTeOGWyfgwRm5qYuW8GQeEKZAf2jGHnh1CbqGk6
jvS2jocPjP39axsOGaHj/bdc89sjYzD0TD0l3E3H5RTXhqzJMTR/mnv9vIoO
/rYSfrvYOHRmcq19E+mYiw1w2Ll2HK4SS9gFm+jgaXULKv8zDsXHw6lqkf2Y
si1z/aw1gdIPFt5uBn2IbM3pMF81gf31vut8l/VB0j3VpdhwAg3BaQMR8n85
c/qa03OTCXB/FLZXCfTBPsbW4Y7tBH6pFk+WNvcit6bf5vDFCVSqdpdZXOnF
CQtJM07DBM64FBX9092DX+vclLT+4cDWqCxQII8Gr5n1i67e4EDf9ut1g2wa
WGXigv0xHLTp229yf0KD0M4SRvoDDtpz7u1qi6HB4JBsyfIcDoYrvl9S9KXh
8sWvB5f/3cXLfqPk7yv+/kjlxoRlhpP46OB9vz6tG6cdpRZrtk/ibnOCrrFT
FxTu9R0UUpnG7uNnNcP02/HK+UnWePAMPHIlh8xJKxzNwi2/lHFRpSD07OBQ
E167+mka8/5g1TZO9JXhBkyLWQi+PTCLx7T3edJi9bCrNdmgkjSH+dYhq6Qj
aiFmsrCi9N85uF8/kZ8eWouK9DZrl7Q51Fgu+Gx8thaGwSHuj17NoXd0OjTg
eC0k1YqiFT7PwTD7+pDonlpU+xr1yo7NYXj5naQOpVoQUd04yd187HPoYIqX
UDEdMK34ypYP3YGouoUFVOT8qsqwceSjut+CLfGKCtUcr/+ij/Lx+lRhk1Iq
FbwD6XSxED58N2vNc71JRVGamplIJh91pbItIc5U+EuMVmU+50Oh4qLz8wNU
aAeV2+14zce1xZ2crr1U3LM67H21lA+ZY5VedtuoCGQ/vCtYz4d97CGesz4V
K519VNNa+Fgt9pCbsYIK2qfN2Vs7/3L/eOTcmAYV+5JayiOG+PAsrJRMkKNC
VODZLo1RPmp298uNSFHx7mRQw/sJPqTE1yhvX0jF+cYdbke4fMyOxCo/FabC
AHIMPp+PofdDshQKFf8DKcIxMQ==
"]]}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->True,
AxesOrigin->{0, 0},
PlotRange->{{-2, 2}, {0., 19.900192707123455`}},
PlotRangeClipping->True,
PlotRangePadding->{
Scaled[0.02],
Scaled[0.02]}]\)