求助:如何求矩阵的行列式?
发布网友
发布时间:2024-10-14 14:05
我来回答
共1个回答
热心网友
时间:2024-10-14 16:55
汗,
2个方法
第一种方法是最简单的,是注意到1,2为特征值故|A-E3|,|A+2E3|都等于零|A²+3A-4E3|=|A-E3||A+4E3|=0
第二种方法
若f(x)是一个多项式,f(A)称为矩阵多项式.
比如:f(x)=x^2+2x-1
则f(A)=A^2+2A-E
那么有一个结论:
如果a是A的特征值,那么f(a)是F(A)的特征值,且重数一样
另一个结论是,行列式等于其对应的矩阵的特征值的乘积.
本题也可以这么做
A-E3对应的多项式为x-1,故其特征值为:0,0,-3,故|A-E3|=0
A+2E3对应的多项式为x+2,故其特征值为:3,3,0,故|A+2E3|=0
A²+3A-4E3对应的多项式为x^2+3x-4,故其特征值为:0,0,-6,故|A²+3A-4E3|=0
我没猜错,你就昨天那人,你想知道的是第二种做法,其实昨天我已经简单介绍了.