...B、C、D,若四边形ABCD的内切圆恰好过焦点,则椭圆的离心率为?_百度...
发布网友
发布时间:2024-10-19 21:39
我来回答
共1个回答
热心网友
时间:2024-11-29 10:01
设椭圆的四个顶点分别为A(-a,0), B(0,b), C(a,0), D(0,-b)
则四边形四条边的方程分别为:
AB:y=b/a*(x+a),即bx-ay+ab=0
BC:y=-b/a*(x-a),即bx+ay-ab=0
CD:y=b/a*(x-a),即bx-ay-ab=0
AD:y=-b/a*(x+a),即bx+ay+ab=0
由椭圆的对称性可知,内切圆的圆心在原点
则圆心到四边的距离相等,均为内切圆半径r
而内切圆过椭圆焦点,∴r=c
取上述任意一条边求半径,有:
r=|ab|/√(a^2+b^2)=ab/√(a^2+b^2)=c
a^2b^2/(a^2+b^2)=c^2
b^2/(a^2+b^2)=c^2/a^2
(a^2-c^2)/(2a^2-c^2)=c^2/a^2
(1-c^2/a^2)/(2-c^2/a^2)=c^2/a^2
(1-e^2)/(2-e^2)=e^2
1-e^2=2e^2-e^4
e^4-3e^2+1=0
e^2=(3-√5)/2 (另一解e^2=(3+√5)/2>1舍弃,因椭圆0<e<1)
e=√[(3-√5)/2]
=√[(5-2√5+1)/4]
=√[(√5-1)/2]^2
=(√5-1)/2
≈0.618