...的三个顶点坐标分别为A(-4,0),B(1,0),C(-2,6). (1)求经过点A,B,C...
发布网友
发布时间:2024-10-16 14:29
我来回答
共1个回答
热心网友
时间:2024-10-23 01:30
(1) ;(2)证明见试题解析;(3)证明见试题解析, .
试题分析:(1)利用待定系数发求解即可得出抛物线的解析式;
(2)求出直线BC的函数解析式,从而得出点E的坐标,然后分别求出AE及CE的长度即可证明出结论;
(3)求出AD的函数解析式,然后结合直线BC的解析式可得出点F的坐标,由题意得∠ABF=∠CBA,然后判断出 是否等于 即可作出判断.
试题解析:(1)设函数解析式为: ,由函数经过点A(﹣4,0)、B(1,0)、C(﹣2,6),
可得 ,解得: ,故经过A、B、C三点的抛物线解析式为: ;
(2)设直线BC的函数解析式为y=kx+b,由题意得: ,解得: ,即直线BC的解析式为 .故可得点E的坐标为(0,2),从而可得:AE= ,CE= ,故可得出AE=CE;
(3)相似.理由如下:设直线AD的解析式为y=kx+b,则 ,解得: ,即直线AD的解析式为 .联立直线AD与直线BC的函数解析式可得: ,解得: ,即点F的坐标为( , ),则BF= ,又∵AB=5,BC= ,∴ , ,∴ ,又∵∠ABF=∠CBA,∴△ABF∽△CBA.故以A、B、F为顶点的三角形与△ABC相似, = .