大学微分和导数的简单题目,求详细过程已经重要方法
发布网友
发布时间:2022-05-07 16:52
我来回答
共1个回答
热心网友
时间:2022-06-30 18:48
1:F(x)=e^(2x)f[e^(-2x)]
F'(x)=2e^(2x)f[e^(-2x)]+e^(2x)f'[e^(-2x)]*e^(-2x)*(-2)
=2e^(2x)f[e^(-2x)]-2f'[e^(-2x)]
2:因为x=y^2+y,所以:
u=[(y^2+y)^2+(y^2+y)]^(3/2)
所以:
u^(2/3)=(y^2+y)^2+y^2+y
两边同时求导得到:
(2/3)u^(-1/3)=2(y^2+y)(2ydy+dy)+2ydy+dy
(2/3)u^(-1/3)=(2y^2+2y+1)(2y+1)dy
所以:
dy/=(2y^2+2y+1)(2y+1)/(2/3)u^(-1/3)
3:x^y=y^x
两边同时取对数得到:
ylnx=xlny
求导得到:
lnxdy+ydx/x=lnydx+xdy/y
(lnx-x/y)dy=(lny-y/x)dx
所以
dy/dx=(lny-y/x)/(lnx-x/y)
4:y=f(arctanx)
y'=f'(arctanx)(arctanx)'
=f'(arctanx)/(1+x^2)
y''=[f''(arctanx)(1+x^2)-f'(arctanx)(1+x^2)']/(x^2+1)^2
=[f''(arctanx)(1+x^2)-2xf'(arctanx)]/(x^2+1)^2
5:y=e^[sin(1/x)]
y'=e^[sin(1/x)]*sin'(1/x)
=e^[sin(1/x)]*cos(1/x)*(-1/x^2)
=-e^[sin(1/x)]cos(1/x)/x^2
y''={2xe^[sin(1/x)cos(1/x)-[e^[sin(1/x)]cos(1/x)]'}/x^4
={2xe^[sin(1/x)cos(1/x)-[e^[sin(1/x)]*cos(1/x)*(-1/x^2)cos(1/x)+e^[sin(1/x)][-sin(1/x)](-1/x^2)]}/x^4
={2xe^[sin(1/x)cos(1/x)+(1/x^2)e^[sin(1/x)][cos^2(1/x)-sin(1/x)]}/x^4
所以:
d^2y={2xe^[sin(1/x)cos(1/x)+(1/x^2)e^[sin(1/x)][cos^2(1/x)-sin(1/x)]}dx/x^4.
6:uv=lnx*e^x
(uv)'=e^x/x+lnxe^x
(uv)''=(xe^x-e^x)/x^2+e^x/x+lnxe^x=(2x-1)e^x/x^2+lnxe^x
所以:
d^2(uv)=[(2x-1)e^x/x^2+lnxe^x]dx