...{bn}是各项都为正数的等比数列,且a1=b1=1,a3+b3=9,a5+b2=11(Ⅰ...
发布网友
发布时间:2024-10-19 10:38
我来回答
共1个回答
热心网友
时间:2024-11-07 19:55
(Ⅰ)设{an}的公差为d,{bn}的公比为q (q>0).
∵数列{an}是等差数列,{bn}是各项都为正数的等比数列,
且a1=b1=1,a3+b3=9,a5+b2=11,
∴(1+2d)+q2=9(1+4d)+q=11,
解得q=2d=2,
∴an=2n?1,bn=2n?1.
(Ⅱ文科)∵an=2n-1,
∴Tn=1a1a2+1a2a3+…+1anan+1
=11×3+13×5+15×7+…+1(2n?1)×(2n+1)
=12[(1-13)+(13-15)+…+(12n?1-12n+1)]
=12(1-12n+1)
=n2n+1.
(Ⅱ理科)∵an=2n?1,bn=2n?1,
∴anbn=2n?12n?1,
∴Tn=120+321+522+…+2n?12n?1,①
则12Tn=121+322+…+2n?32n?1+2n?12n,②
由①-②得 12Tn=120+221+222+…+22n?1共n?1项?2n?12n
=1+(1?12n?1)1?12?2n?12n=3?3+2n2n,
∴Tn=6?3+2n2n?1.