发布网友 发布时间:2024-10-18 15:54
共3个回答
热心网友 时间:2024-11-21 10:13
假设向量组1的极大无关组为α1、α2、...αm,向量组2的极大无关组为β1、β2、...βn,又因为向量组1可由向量组2线性表出,则α1、α2、...、αm,可由β1、β2、...、βn线性表出,设m>n。
根据向量组A(s个向量)可由向量组B(t个向量)线性表出,且s>t,则向量组A线性相关。则α1、α2、...、αm线性相关,与题设矛盾,故可得m<=n,即向量组1的秩小于等于向量组2的秩。
其中,线性表出:设α₁,α₂,…,αₑ(e≥1)是域P上线性空间V中的有限个向量,若V中向量α可以表示为α=k₁α₁+k₂α₂+…+kₑαₑ(kₐ∈P,a=1,2,…,e),则称α是向量组α₁,α₂,…,αₑ的一个线性组合,亦称α可由向量组α₁,α₂,…,αₑ线性表示或线性表出。
扩展资料1、等价向量组具有传递性、对称性及反身性。但向量个数可以不一样,线性相关性也可以不一样。
2、任一向量组和它的极大无关组等价。
3、向量组的任意两个极大无关组等价。
4、两个等价的线性无关的向量组所含向量的个数相同。
5、等价的向量组具有相同的秩,但秩相同的向量组不一定等价。
6、如果向量组A可由向量组B线性表示,且R(A)=R(B),则A与B等价。
热心网友 时间:2024-11-21 10:20
只有当一组能被二组线性表出,
但二组不能将一组线性表出时,才可推出
热心网友 时间:2024-11-21 10:16
A:反设r>s.因为向量组I=α1,α2,…,αr,可由向量组Ⅱ=β1,β2,…,βs线性表出,所以向量组α1,α2,…,αr的秩<s<r,所以向量组I=α1,α2,…,αr线性相关,矛盾!故r≤s,故A成立.B:如果向量组Ⅱ=β1,β2,…,βs线性相关,取αi=βi,i=1,…,s,则向量组I线性相关,且r=s,故B不正确.C:因为向量组II详细相关,故存在βk为非零向量,取αi=iβk,i=1,…,s+1,则向量组I线性相关,但r=s+1>s,故C不正确.D:取α1=(12,?12),β1=(1,-1)T,β2=(-1,1)T,则α1=12β1+0β2,故向量组I可由向量组II线性表出,但r<s,故D不正确.故选:A.