发布网友 发布时间:2024-10-18 17:54
共1个回答
热心网友 时间:2024-10-18 18:03
无论是一元几次多项式的因式分解,一般只要出题要你因式分解,一般都可以分解。1)公式法:主要看未知数的系数是否可以套用公式:比如完全立方公式x^3+3ax^2+3a^2x+a^3=(x+a)^3,和x^3-3ax^2+3a^2x-a^3=(x-a)^3;还有公式:x^3-a^3=(x-a)(x^2+ax+a^2);当然,一般增加难度时,打乱排列的顺序,增加个公共系数另外加个常数项负1,例如对:8x^3+24x^2+24x+7的因式分解。整个式子表面看没有公因式,就需要你动手变形,变为:8x^3+24x^2+24x+7+1-1=8*(x^3+3x^2+3x+1)-1=8*(x+1)^3-1=[2(x+1)]^3-1=[2(x+1)-1]*{[2(x+1)]^2+2(x+1)+1}=(2x+1)(4x^2+8x+4+2x+2+1)=(2x-1)(4x^2+10x+7)。