...数学学习的,老师,专家,学习有好方法者请进。(江苏连云港的版本...
发布网友
发布时间:2024-10-23 01:33
我来回答
共5个回答
热心网友
时间:2024-11-20 03:05
一、数学的特点
数学的三大特点: 严谨性、抽象性、广泛的应用性
所谓数学的严谨性,指数学具有很强的逻辑性和较高的精通性,一般以公理化体系来体现。
什么是公理化体系呢?指得是选用少数几个不加定义的概念和不加逻辑证明的命题为基础,推出一些定理,使之成为数学体系,在这方面,古希腊数学家欧几里得是个典范,他所著的《几何原本》就是在几个公理的基础上研究了平面几何中的大多数问题。在这里,哪怕是最基本的常用的原始概念都不能直观描述,而要用公理加以确认或证明。
中学数学和数学科学在严谨性上还是有所区别的,如,中学数学中的数集的不断扩充,针对数集的运算律的扩充并没有进行严谨的推证,而是用默认的方式得到,从这一点看来,中学数学在严谨性上还是要差很多,但是,要学好数学却不能放松严谨性的要求,要保证内容的科学性。
比如,等差数列的通项是通过前若干项的递推从而归纳出通项公式,但要予以确认,还需要用数学归纳法进行严格的证明。
数学的抽象性表现在对空间形式和数量关系这一特性的抽象。它在抽象过程中抛开较多的事物的具体的特性,因而具有十分抽象的形式。它表现为高度的概括性,并将具体过程符号化,当然,抽象必须要以具体为基础。
至于数学的广泛的应用性,更是尽人皆知的。只是在以往的教学、学习中,往往过于注重定理、概念的抽象意义,有时却抛却了它的广泛的应用性,如果把抽象的概念、定理比作骨骼,那么数学的广泛应用就好比血肉,缺少哪一个都将影响数学的完整性。高中数学新教材中大量增加数学知识的应用和研究性学习的篇幅,就是为了培养同学们应用数学解决实际问题的能力。
我们来看看一个生活中有趣的问题。
在任何一次集会中,握过奇数次手的人必有偶数个,试证明。
如果抓住两个关键:一是握手总次数必为偶数,
二、高中数学的特点
往往有同学进入高中以后不能适应数学学习,进而影响到学习的积极性,甚至成绩一落千丈。为什么会这样呢?让我们先看看高中数学和初中数学有些什么样的转变吧。
1.理论加强 2.课程增多 3.难度增大 4.要求提高
三、掌握数学思想
高中数学从学习方法和思想方法上更接近于高等数学。学好它,需要我们从方法论的高度来掌握它。我们在研究数学问题时要经常运用唯物辩证的思想去解决数学问题。数学思想,实质上就是唯物辩证法在数学中的运用的反映。中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,初步公理化思想,数形结合思想,运动思想,转化思想,变换思想。
例如,数列、一次函数、解析几何中的直线几个概念都可以用函数(特殊的对应)的概念来统一。又比如,数、方程、不等式、数列几个概念也都可以统一到函数概念。
再看看下面这个运用“矛盾”的观点来解题的例子。
已知动点Q在圆x2+y2=1上移动,定点P(2,0),求线段PQ中点的轨迹。
分析此题,图中P、Q、M三点是互相制约的,而Q点的运动将带动M点的运动;主要矛盾是点Q的运动,而点Q的运动轨迹遵循方程x02+y02=1①;次要矛盾关系:M是线段PQ的中点,可以用中点公式将M的坐标(x,y)用点Q的坐标表示出来。
x=(x0+2)/2 ②
y=y0/2 ③
显然,用代入的方法,消去题中的x0、y0就可以求得所求轨迹。
数学思想方法与解题技巧是不同的,在证明或求解中,运用归纳、演绎、换元等方法解题问题可以说是解题的技术性问题,而数学思想是解题时带有指导性的普遍思想方法。在解一道题时,从整体考虑,应如何着手,有什么途径?就是在数学思想方法的指导下的普遍性问题。
有了数学思想以后,还要掌握具体的方法,比如:换元、待定系数、数学归纳法、分析法、综合法、反证法等等。只有在解题思想的指导下,灵活地运用具体的解题方法才能真正地学好数学,仅仅掌握具体的操作方法,而没有从解题思想的角度考虑问题,往往难于使数学学习进入更高的层次,会为今后进入大学深造带来很有麻烦。
在具体的方法中,常用的有:观察与实验,联想与类比,比较与分类,分析与综合,归纳与演绎,一般与特殊,有限与无限,抽象与概括等。
要打赢一场战役,不可能只是勇猛冲杀、一不怕死二不怕苦就可以打赢的,必须制订好事关全局的战术和策略问题。解数学题时,也要注意解题思维策略问题,经常要思考:选择什么角度来进入,应遵循什么原则性的东西。一般地,在解题中所采取的总体思路,是带有原则性的思想方法,是一种宏观的指导,一般性的解决方案。
中学数学中经常用到的数学思维策略有:
以简驭繁、数形结全、进退互用、化生为熟、正难则反、倒顺相还、动静转换、分合相辅
如果有了正确的数学思想方法,采取了恰当的数学思维策略,又有了丰富的经验和扎实的基本功,一定可以学好高中数学。
四、学习方法的改进
身处应试教育的怪圈,每个教师和学生都不由自主地陷入“题海”之中,教师拍心某种题型没讲,高考时做不出,学生怕少做一道题,万一考了损失太惨重,在这样一种氛围中,往往忽视了学习方法的培养,每个学生都有自己的方法,但什么样的学习方法才是正确的方法呢?是不是一定要“博览群题”才能提高水平呢?
现实告诉我们,大胆改进学习方法,这是一个非常重大的问题。
(一) 学会听、读
我们每天在学校里都在听老师讲课,阅读课本或者资料,但我们听和读对不对呢?
让我们从听(听讲、课堂学习)和读(阅读课本和相关资料)两方面来谈谈吧。学生学习的知识,往往是间接的知识,是抽象化、形式化的知识,这些知识是在前人探索和实践的基础上提炼出来的,一般不包含探索和思维的过程。因此必须听好老师讲课,集中注意力,积极思考问题。弄清讲得内容是什么?怎么分析?理由是什么?采用什么方法?还有什么疑问?只有这样,才可能对教学内容有所理解。
听讲的过程不是一个被动参预的过程,在听讲的前提下,还要展开来分析:这里用了什么思想方法,这样做的目的是什么?为什么老师就能想到最简捷的方法?这个题有没有更直接的方法?
“学而不思则罔,思而不学则殆”,在听讲的过程中一定要有积极的思考和参预,这样才能达到最高的学习效率。
阅读数学教材也是掌握数学知识的非常重要的方法。只有真正阅读和数学教材,才能较好地掌握数学语言,提高自学能力。一定要改变只做题不看书,把课本当成查公式的辞典的不良倾向。阅读课本,也要争取老师的指导。阅读当天的内容或一个单元一章的内容,都要通盘考虑,要有目标。
比如,学习反正弦函数,从知识上来讲,通过阅读,应弄请以下几个问题:
(1)是不是每个函数都有反函数,如果不是,在什么情况下函数有反函数?
(2)正弦函数在什么情况下有反函数?若有,其反函数如何表示?
(3)正弦函数的图象与反正弦函数的图象是什么关系?
(4)反正弦函数有什么性质?
(5)如何求反正弦函数的值?
(二)学会思考
爱因斯坦曾说:“发展独立思考和独立判断的一般能力应当始终放在首位”,勤于思考,善于思考,是对我们学习数学提出的最基本的要求。一般来说,要尽力做到以下两点。
1、善于发现问题和提出问题
2、善于反思与反求
希望对你能有帮助
热心网友
时间:2024-11-20 03:04
真的努力就每天做高一高二的题 各做一套
要这样学习是没有捷径的 坚持就是硬道理
然后就是会做的题目类型就不要反复去做浪费时间
不会做的要先自己研究 然后不行再去问老师同学 这样加深印象
而且书上的条条框框一定要理解透彻 公式什么的都要背熟
热心网友
时间:2024-11-20 03:04
怎么说呢 学好数学很难 高考考的很高也很难 但是如果你的追求是120分的话,那倒是很容易,你不需要学习太难的东西,但基础一定要打好,考试一定要细心,高考时前面的选择和填空,坚决一份不能丢,后面的大题,前2道都比较简单,你也肯定会做,后面必定还有2道难题,建议不要浪费太多时间在它身上,如果敢保证前面的全对,120分已经没问题了,后面大题,至少你也会一两步,那就写上,也有分,这就是我数学学的不好,高考还能考130分的秘密。
热心网友
时间:2024-11-20 03:04
如果你真的有心。把初一的题目翻出来。
初一初二的题目每个做一套卷子。不要嫌麻烦。哪怕是会做的也重新做一边。
然后初三的卷子做两遍。高一数学先把数学书做一遍,然后做卷子。
一直到你跟上你的进度为止。
上课要好好听课,要是觉得无聊了,头疼了。也不要放弃,听下去,多花点时间。学习这东西没有捷径。
学海无涯苦作舟,这句话没错的。
热心网友
时间:2024-11-20 03:10
不上晚自习的话,可以考虑请个家教,利用晚上好好学学。他可以给你一些具体的指导。毕竟自学的话会有些吃力。
你要有信心,实际上初中加高中的数学并没有太多内容,尤其是当你毕业多年以后回头看看,发现真没什么东西,只是个熟练的问题。所以只要你有决心,一定能够补上。
但是也要做好对困难的充分估计,在这个过程中,你可能会经常受到打击,经常觉得沮丧,经常想放弃,一定要坚持住。要知道,在你觉得最没有希望的时候,如果能再坚持一下,就会立刻海阔天空。
至于具体的复习方法,首先应该从初中的基础抓起,每天按照一定的进度复习初中课本,并且选择适当的题目来练习,可以是当时老师布置的作业,或者是练习册,大概用一个月时间把初中知识梳理一遍,梳理的过程中一定注意多反思多总结。坚持梳理完初中的知识,应该会对数学有点感觉了,说不定还会产生一点兴趣,这是再开始重点补高中的知识。不用担心初中数学还不够熟练,学习高中知识本身就能巩固初中的知识,遇到不清楚的地方也要及时翻看初中的课本。高中的复习依旧是按照固定的进度,但要求要比初中的高了,把高一老师曾经布置过的题目都做了,可以适当放放难题,先把整体的基础打老,不用急着一步到位。在补习高一的过程中,高二新学的知识你可能听不懂,这样要合理安排时间,要知道你要做的是尽快赶上学校的进度,所以先努力把以前的补上,新学的能懂多少就学多少,尽量不要再落下更多。直到你发现老师讲的已经基本能听懂,你已经基本赶上了,之后要做的就是进一步巩固知识,争取更好的成绩。
在这个过程中,你仍然会长时间落后于班上的同学,千万不要急于求成,打击了信心。这不是项容易的任务,但是只要你有决心和毅力,就一定能完成,到那时你将会脱胎换骨。祝你成功!
热心网友
时间:2024-11-20 03:05
一、数学的特点
数学的三大特点: 严谨性、抽象性、广泛的应用性
所谓数学的严谨性,指数学具有很强的逻辑性和较高的精通性,一般以公理化体系来体现。
什么是公理化体系呢?指得是选用少数几个不加定义的概念和不加逻辑证明的命题为基础,推出一些定理,使之成为数学体系,在这方面,古希腊数学家欧几里得是个典范,他所著的《几何原本》就是在几个公理的基础上研究了平面几何中的大多数问题。在这里,哪怕是最基本的常用的原始概念都不能直观描述,而要用公理加以确认或证明。
中学数学和数学科学在严谨性上还是有所区别的,如,中学数学中的数集的不断扩充,针对数集的运算律的扩充并没有进行严谨的推证,而是用默认的方式得到,从这一点看来,中学数学在严谨性上还是要差很多,但是,要学好数学却不能放松严谨性的要求,要保证内容的科学性。
比如,等差数列的通项是通过前若干项的递推从而归纳出通项公式,但要予以确认,还需要用数学归纳法进行严格的证明。
数学的抽象性表现在对空间形式和数量关系这一特性的抽象。它在抽象过程中抛开较多的事物的具体的特性,因而具有十分抽象的形式。它表现为高度的概括性,并将具体过程符号化,当然,抽象必须要以具体为基础。
至于数学的广泛的应用性,更是尽人皆知的。只是在以往的教学、学习中,往往过于注重定理、概念的抽象意义,有时却抛却了它的广泛的应用性,如果把抽象的概念、定理比作骨骼,那么数学的广泛应用就好比血肉,缺少哪一个都将影响数学的完整性。高中数学新教材中大量增加数学知识的应用和研究性学习的篇幅,就是为了培养同学们应用数学解决实际问题的能力。
我们来看看一个生活中有趣的问题。
在任何一次集会中,握过奇数次手的人必有偶数个,试证明。
如果抓住两个关键:一是握手总次数必为偶数,
二、高中数学的特点
往往有同学进入高中以后不能适应数学学习,进而影响到学习的积极性,甚至成绩一落千丈。为什么会这样呢?让我们先看看高中数学和初中数学有些什么样的转变吧。
1.理论加强 2.课程增多 3.难度增大 4.要求提高
三、掌握数学思想
高中数学从学习方法和思想方法上更接近于高等数学。学好它,需要我们从方法论的高度来掌握它。我们在研究数学问题时要经常运用唯物辩证的思想去解决数学问题。数学思想,实质上就是唯物辩证法在数学中的运用的反映。中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,初步公理化思想,数形结合思想,运动思想,转化思想,变换思想。
例如,数列、一次函数、解析几何中的直线几个概念都可以用函数(特殊的对应)的概念来统一。又比如,数、方程、不等式、数列几个概念也都可以统一到函数概念。
再看看下面这个运用“矛盾”的观点来解题的例子。
已知动点Q在圆x2+y2=1上移动,定点P(2,0),求线段PQ中点的轨迹。
分析此题,图中P、Q、M三点是互相制约的,而Q点的运动将带动M点的运动;主要矛盾是点Q的运动,而点Q的运动轨迹遵循方程x02+y02=1①;次要矛盾关系:M是线段PQ的中点,可以用中点公式将M的坐标(x,y)用点Q的坐标表示出来。
x=(x0+2)/2 ②
y=y0/2 ③
显然,用代入的方法,消去题中的x0、y0就可以求得所求轨迹。
数学思想方法与解题技巧是不同的,在证明或求解中,运用归纳、演绎、换元等方法解题问题可以说是解题的技术性问题,而数学思想是解题时带有指导性的普遍思想方法。在解一道题时,从整体考虑,应如何着手,有什么途径?就是在数学思想方法的指导下的普遍性问题。
有了数学思想以后,还要掌握具体的方法,比如:换元、待定系数、数学归纳法、分析法、综合法、反证法等等。只有在解题思想的指导下,灵活地运用具体的解题方法才能真正地学好数学,仅仅掌握具体的操作方法,而没有从解题思想的角度考虑问题,往往难于使数学学习进入更高的层次,会为今后进入大学深造带来很有麻烦。
在具体的方法中,常用的有:观察与实验,联想与类比,比较与分类,分析与综合,归纳与演绎,一般与特殊,有限与无限,抽象与概括等。
要打赢一场战役,不可能只是勇猛冲杀、一不怕死二不怕苦就可以打赢的,必须制订好事关全局的战术和策略问题。解数学题时,也要注意解题思维策略问题,经常要思考:选择什么角度来进入,应遵循什么原则性的东西。一般地,在解题中所采取的总体思路,是带有原则性的思想方法,是一种宏观的指导,一般性的解决方案。
中学数学中经常用到的数学思维策略有:
以简驭繁、数形结全、进退互用、化生为熟、正难则反、倒顺相还、动静转换、分合相辅
如果有了正确的数学思想方法,采取了恰当的数学思维策略,又有了丰富的经验和扎实的基本功,一定可以学好高中数学。
四、学习方法的改进
身处应试教育的怪圈,每个教师和学生都不由自主地陷入“题海”之中,教师拍心某种题型没讲,高考时做不出,学生怕少做一道题,万一考了损失太惨重,在这样一种氛围中,往往忽视了学习方法的培养,每个学生都有自己的方法,但什么样的学习方法才是正确的方法呢?是不是一定要“博览群题”才能提高水平呢?
现实告诉我们,大胆改进学习方法,这是一个非常重大的问题。
(一) 学会听、读
我们每天在学校里都在听老师讲课,阅读课本或者资料,但我们听和读对不对呢?
让我们从听(听讲、课堂学习)和读(阅读课本和相关资料)两方面来谈谈吧。学生学习的知识,往往是间接的知识,是抽象化、形式化的知识,这些知识是在前人探索和实践的基础上提炼出来的,一般不包含探索和思维的过程。因此必须听好老师讲课,集中注意力,积极思考问题。弄清讲得内容是什么?怎么分析?理由是什么?采用什么方法?还有什么疑问?只有这样,才可能对教学内容有所理解。
听讲的过程不是一个被动参预的过程,在听讲的前提下,还要展开来分析:这里用了什么思想方法,这样做的目的是什么?为什么老师就能想到最简捷的方法?这个题有没有更直接的方法?
“学而不思则罔,思而不学则殆”,在听讲的过程中一定要有积极的思考和参预,这样才能达到最高的学习效率。
阅读数学教材也是掌握数学知识的非常重要的方法。只有真正阅读和数学教材,才能较好地掌握数学语言,提高自学能力。一定要改变只做题不看书,把课本当成查公式的辞典的不良倾向。阅读课本,也要争取老师的指导。阅读当天的内容或一个单元一章的内容,都要通盘考虑,要有目标。
比如,学习反正弦函数,从知识上来讲,通过阅读,应弄请以下几个问题:
(1)是不是每个函数都有反函数,如果不是,在什么情况下函数有反函数?
(2)正弦函数在什么情况下有反函数?若有,其反函数如何表示?
(3)正弦函数的图象与反正弦函数的图象是什么关系?
(4)反正弦函数有什么性质?
(5)如何求反正弦函数的值?
(二)学会思考
爱因斯坦曾说:“发展独立思考和独立判断的一般能力应当始终放在首位”,勤于思考,善于思考,是对我们学习数学提出的最基本的要求。一般来说,要尽力做到以下两点。
1、善于发现问题和提出问题
2、善于反思与反求
希望对你能有帮助
热心网友
时间:2024-11-20 03:11
真的努力就每天做高一高二的题 各做一套
要这样学习是没有捷径的 坚持就是硬道理
然后就是会做的题目类型就不要反复去做浪费时间
不会做的要先自己研究 然后不行再去问老师同学 这样加深印象
而且书上的条条框框一定要理解透彻 公式什么的都要背熟
热心网友
时间:2024-11-20 03:05
不上晚自习的话,可以考虑请个家教,利用晚上好好学学。他可以给你一些具体的指导。毕竟自学的话会有些吃力。
你要有信心,实际上初中加高中的数学并没有太多内容,尤其是当你毕业多年以后回头看看,发现真没什么东西,只是个熟练的问题。所以只要你有决心,一定能够补上。
但是也要做好对困难的充分估计,在这个过程中,你可能会经常受到打击,经常觉得沮丧,经常想放弃,一定要坚持住。要知道,在你觉得最没有希望的时候,如果能再坚持一下,就会立刻海阔天空。
至于具体的复习方法,首先应该从初中的基础抓起,每天按照一定的进度复习初中课本,并且选择适当的题目来练习,可以是当时老师布置的作业,或者是练习册,大概用一个月时间把初中知识梳理一遍,梳理的过程中一定注意多反思多总结。坚持梳理完初中的知识,应该会对数学有点感觉了,说不定还会产生一点兴趣,这是再开始重点补高中的知识。不用担心初中数学还不够熟练,学习高中知识本身就能巩固初中的知识,遇到不清楚的地方也要及时翻看初中的课本。高中的复习依旧是按照固定的进度,但要求要比初中的高了,把高一老师曾经布置过的题目都做了,可以适当放放难题,先把整体的基础打老,不用急着一步到位。在补习高一的过程中,高二新学的知识你可能听不懂,这样要合理安排时间,要知道你要做的是尽快赶上学校的进度,所以先努力把以前的补上,新学的能懂多少就学多少,尽量不要再落下更多。直到你发现老师讲的已经基本能听懂,你已经基本赶上了,之后要做的就是进一步巩固知识,争取更好的成绩。
在这个过程中,你仍然会长时间落后于班上的同学,千万不要急于求成,打击了信心。这不是项容易的任务,但是只要你有决心和毅力,就一定能完成,到那时你将会脱胎换骨。祝你成功!
热心网友
时间:2024-11-20 03:05
如果你真的有心。把初一的题目翻出来。
初一初二的题目每个做一套卷子。不要嫌麻烦。哪怕是会做的也重新做一边。
然后初三的卷子做两遍。高一数学先把数学书做一遍,然后做卷子。
一直到你跟上你的进度为止。
上课要好好听课,要是觉得无聊了,头疼了。也不要放弃,听下去,多花点时间。学习这东西没有捷径。
学海无涯苦作舟,这句话没错的。
热心网友
时间:2024-11-20 03:07
怎么说呢 学好数学很难 高考考的很高也很难 但是如果你的追求是120分的话,那倒是很容易,你不需要学习太难的东西,但基础一定要打好,考试一定要细心,高考时前面的选择和填空,坚决一份不能丢,后面的大题,前2道都比较简单,你也肯定会做,后面必定还有2道难题,建议不要浪费太多时间在它身上,如果敢保证前面的全对,120分已经没问题了,后面大题,至少你也会一两步,那就写上,也有分,这就是我数学学的不好,高考还能考130分的秘密。