不等式atb≥2√(ab)成立当且仅当什么?
发布网友
发布时间:2024-10-23 01:48
我来回答
共1个回答
热心网友
时间:2024-10-30 05:19
基本不等式是一种在数学中常用的不等式关系,其中"atb ≥ 2√(ab)" 是基本不等式的形式之一,其中 a 和 b 是非负实数。
当我们将不等式"atb ≥ 2√(ab)" 进行简化和推导时,可以得到以下理解:
1. 证明 atb ≥ 2√(ab):我们可以将不等式左侧的 atb 拆分为 (a√b)·(b√a),然后应用算术-几何均值不等式 (AM-GM不等式)。根据算术-几何均值不等式,(a√b)·(b√a) 的值最小当且仅当 a√b = b√a,即 a = b。当 a = b 时,不等式变为 a² ≥ 2a²,即 1 ≥ 2,这是一个不成立的结论。因此,我们可以推导出 a ≠ b 时,atb ≥ 2√(ab)。
2. 说明 a-b 时取最小值:当我们将 a-b 代入不等式中,可以得到 (a-b)·b ≥ 2√((a-b)b),简化后得到 b² - ab + 2ab - 2b√(ab) ≥ 0。将其拆分为两个部分,得到 (b-√(ab))² ≥ 0,这是一个恒成立的结论。因此,当 a-b 时,不等式取得最小值,最小值为 0。
综上所述,对于不等式 atb ≥ 2√(ab),它成立当且仅当 a ≠ b,并且取得最小值当且仅当 a = b。