一道数学难题(英文)
发布网友
发布时间:2022-05-07 02:50
我来回答
共4个回答
热心网友
时间:2023-10-12 17:19
(简称两人为A与N)定义函数f(n)如下:
游戏的起始数为n时,若A必胜,则f(n)=0,若N必胜,则f(n)=1。
于是容易发现,f 满足如下规律:f(n) = (1-f(n-1))(1-f([n/2])),其中[n/2]是n/2的整数部分。这是因为从n开始时,N能获胜当且仅当n-1与[n/2]都是先手的必胜局,否则A可选择留给N的起始数为n-1或[n/2],使先手必败。
于是我们先证明f(2n+1)=0,即起始数为奇数时,A必胜。n=0时显然成立。对一般的n,如果f(2n+1)=1,则
f(2n+1) = (1-f(n))(1-f(2n)) = 1 => f(n) = f(2n) = 0
f(2n) = (1-f(n))(1-f(2n-1)) = 1-f(2n-1) = 0 => f(2n-1) = 1
=> …… => f(1) = 1
矛盾。
那么,对于偶数n,设n=m*2^d,其中m是奇数。则
f(n) = (1-f(m*2^{d-1}))(1-f(m*(2^d - 1))) = 1-f(m*2^{d-1})
即,当n是偶数时,对于以n与n/2开始的游戏,A的胜负情况恰好相反。于是,当d是奇数的时候,A必败;反之A必胜。
于是:1000=125*2^3 => A必败,2000=125*2^4 => A必胜。
此外,当n->∝时,N获胜的概率为:
lim_{n->∝}1/n{[n/2] - [n/4] + [n/8] - ... - (-1)^d[n/2^d] - ...} = 1/3
热心网友
时间:2023-10-12 17:20
朋友
我先帮你翻译一下
Nathan 和 Abi 在玩一个游戏, Abi总是第一个先来. 玩家们将轮流把1个正数转换成更小的正数(比如将27转换成26)然后再把这个转换后的正数传给其他玩家, 在每次行动时, 玩家可以将那个正数减1或除2 如果是分数要把它改换成正数(比如得到的数字是14.5就要将它换成14),
因此, 有个正数是28你可以(28-1)就是27 或 (28除2)就是14 或 如果整数是27那么也还是(27-1)就是26 或 (27除2)就是13.5 但要将它改成13
当这个整数一直延伸到0时这个游戏就结束了, 赢家将会是最后一个行动的玩家(就是最后将整数转换到0的玩家)
比方: 这个整数是15 先从Abi开始 他可能将用(15/2)然后得到7 接着把这个7传给Nathan 然后Nathan可能用(7-1)得到6 再接着传给Abi 然后Abi 可能用(6/2)得到3 在然后 把3传给 Nathan 这样接着接着 之到最后一个玩家得到0也就是Nathan 最后从Abi哪得到1后再将1-1就等于0) Nathan 得到0赢了
接下来的是问题:
1. 如果Abi 和 Nathan 两个人都用最好的战略 谁将会赢如果这个整数是 1000? 或 2000?(Abi总是第1个先来) 证实你的答案
楼主 请你把第2题的问题 but what is its limit as n tends to in nity 打清楚好吗? 有个字你好像打错了
我帮你做做吧
热心网友
时间:2023-10-12 17:20
这题很无聊啊,又是什么竞赛的题吧,那些老头老太太就会胡闹!
热心网友
时间:2023-10-12 17:21
谁出的,是英语还是数学