发布网友 发布时间:2024-10-01 11:07
共1个回答
热心网友 时间:2024-11-14 01:37
log换底公式是:loga(N)=logb(N)/logb(a)。
证明:loga(N)=x,则a^x=N,两边取以b为底的对数,logb(a^x)=logb(N),xlogb(a)=logb(N),x=logb(N)/logb(a),所以loga(N)=logb(N)/logb(a)。
换底公式是高中数学常用对数运算公式,可将多异底对数式转化为同底对数式,结合其他的对数运算公式一起使用。计算中常常会减少计算的难度,更迅速的解决高中范围的对数运算。
log换底函数:
如果ax=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=logaN,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数。
一般地,函数y=logaX(a>0,且a≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数。
其中x是自变量,函数的定义域是(0,+∞),即x>0。它实际上就是指数函数的反函数,可表示为x=ay。因此指数函数里对于a的规定,同样适用于对数函数。