发布网友 发布时间:2024-10-01 01:58
共0个回答
(an-a(n-1)-1)(an+a(n-1))=0 因为an的各项均为正数 所以an-a(n-1)-1=0 即an-a(n-1)=1 所以是等差数列 2)a1=a1(a1+1)/2 a1=1 由第一问得到an=n bn=1/2sn=1/an(an+1)=1/an-1/(an+1)=1-1/2 所以tn=1-1/2+1/2-1/3+1/3-1/4+...+1/an-1/an...
已知数列{an}的各项均为正数,前n项和为Sn,且Sn=an(an+1)/2,n为正整...2an=(an)^2-(an-1)^2+an-a(n-1)(an)^2-(an-1)^2-[an+a(n-1)]=0 [an+a(n-1)][an-a(n-1)-1]=0 an-a(n-1)-1=0 an-a(n-1)=1 2S1=2a1=a1(a1+1)a1=1 an=a1+n-1=1+n-1=n an=n,Sn=n(1+n)/2 bn=1/2Sn=1/n(1+n)=1/n-1/(1+n)Tn=b1...
已知数列an的各项均为正数,前n项和为Sn且Sn等于二分之an(an+1),n属...an-a(n-1) -1=0 an-a1=n-1 an =n (2)Sn = n(n+1)/2 bn = 1/(2Sn)= 1/[n(n+1)]= 1/n -1/(n+1)Tn =b1+b2+...+bn = 1- 1/(n+1)= n/(n+1)
...an}的各项均为正数,前n项和为Sn,且Sn=an(an+1)2(n∈N*).(1)求数 ...(1)Sn=an(an+1)2,n∈N+,当n=1时,S1=a1(a1+1)2,∴a1=1…(1分)∵2Sn=an2+an,当n≥2时,2Sn-1=an?12+an-1,两式相减得:2an=2(Sn?Sn?1)=a2n?a2n?1+an?an?1,…(3分)∴(an+an-1)(an-an-1-1)=0,∵an+an-1>0,∴an-an-1=1,n≥2,…(...
已知数列{an}的各项均为正数,前n项和为Sn且Sn=an(an 1)/2 求数列an是...a(n+1)=2an 因此{an}是等比数列,首项1/2,公比2 an=(1/2)*2^(n-1)=2^(n-2)Sn,an,1/2成等差数列 2an=1/2+Sn 2an-1=1/2+Sn-1 2a1=1/2+S1=1/2+a1 a1=1/2 2an-2an-1=1/2+Sn-1/2-Sn-1=an an/an-1=2 所以{an}是以a1=1/2 q=2的等比数列 an...
已知数列{an}的各项均为正数,前n项和为Sn且Sn=an(an+1)/2 求数列{an...解:Sn=an(an+1)/2 2Sn=an²+an (1)2S(n-1)=a(n-1)²+a(n-1) (2)(1)-(2)2an=an²-a(n-1)²+an-a(n-1)an²-a(n-1)²=an+a(n-1)【an-a(n-1)】【an+a(n-1)】=an+a(n-1)数列{an}的各项均为正数,an+a(n-1)>...
...其前n项和为Sn,且满足2anSn?an2=1.(Ⅰ)求证数列{S2n}为等差数列,并...12=1(n≥2),(2分)又S12=1,(3分)∴数列{S2n}为首项和公差都是1的等差数列. (4分)∴S2n=n,又Sn>0,∴Sn=n (5分)∴n≥2时,an=Sn-Sn-1=n?n?1,又a1=S1=1适合此式∴数列{an}的通项公式为an=n?n?1;((7分)(Ⅱ)解:∵bn=24S...
...其前n项和为Sn,且满足a1=1,an+1=2(根号Sn)+1,n属于正整数_百度知 ...解答步骤详见图片:
...An各项均为正数,其前n项和为Sn,且满足4Sn=(An 1)²⑴求An的通项...an=2n-1 tn=1/(2n+1)解题思路:由sn+1-sn化简得(an+1+an)(an+1-an-2)=0 因为数列an各项为正所以它是一个公差为2的等差数列 令n为1求的a1 第二问 2bn=1/an-1/an+1用叠带求和得tn 这样可以么?
已知各项均为正数的数列an的前n项和为Sn,且Sn,an,2分之1成等差数列,求...推出 2a(n+1)=S(n+1)+1/2 ——(2)(2)-(1)得 2a(n+1)-2an=S(n+1)-Sn 由于a(n+1)=S(n+1)-Sn,代入上式 2a(n+1)-2an=a(n+1)即a(n+1)=2an a(n+1)/an=2,即公比q=2 由(1)得出2a1=S1+1/2=a1+1/2,即a1=1/2 所以an=a1*q^(n-1)=1/2*2...