发布网友 发布时间:2024-10-01 01:58
共0个回答
即an+(a(n-1)+1/a(n-1))-1/an=0 an^2+2S(n-1)an -1=0 由an>0解得an=√(S(n-1)^2+1)-S(n-1)=1/[√(S(n-1)^2+1)+S(n-1)]代入①式得Sn=√(S(n-1)^2+1)Sn^2=S(n-1)^2+1 所以{Sn^2}为首项1公差为1的等差数列 Sn^2=n即Sn=√n an=Sn-S(n-...
...均为正数,前n项和为Sn且Sn=an(an+1)/2 求数列{an}的通项公式._百度...解:Sn=an(an+1)/2 2Sn=an²+an (1)2S(n-1)=a(n-1)²+a(n-1) (2)(1)-(2)2an=an²-a(n-1)²+an-a(n-1)an²-a(n-1)²=an+a(n-1)【an-a(n-1)】【an+a(n-1)】=an+a(n-1)数列{an}的各项均为正数,an+a(n-1)...
...的前n项和为Sn,且满足Sn=1/2(an+1/an),求an由an=sn-s(n-1)可得,2sn=sn-s(n-1)+1/[sn-s(n-1)] ,n>=2 整理后可得:sn^2-s(n-1)^2=1 n>=2 则数列{sn^2}是公差为1的等差数列,则sn=根号n,n>=2 则an=sn-s(n-1)=根号n-根号(n-1) ,n>=2 又a1=1,满足上式,则an= 根号n-根号(n-1)...
...的前n项和为Sn,且满足Sn=1/2(an+1/an),求an则数列{sn^2}是公差为1的等差数列,则sn=根号n,n>=2 则an=sn-s(n-1)=根号n-根号(n-1),n>=2 又a1=1,满足上式,则an= 根号n-根号(n-1)
设各项都为正数的数列{an}的前n项和为Sn,且Sn=1/2(an+1/an) (1)求a...Sn-S(n-1)=an 上面两式相乘得:Sn^2-S(n-1)^2=1 S1=a1=1/2(a1+1/a1),a1=1 {Sn^2}是首项为S1^2=1,公差为1的等差数列 Sn^2=n Sn=√n an=Sn-S(n-1)=√n-√(n-1)【解法二】两边同乘2an 2anSn=an²+1 2(Sn-Sn-1)Sn=(Sn-Sn-1)²+1 (Sn...
(1)Sn=(1/2)(an-1)(an+2)n=1,a1=(1/2)(a1-1)(a1+2)(a1)^2-a1-2=0 (a1-2)(a1+1)=0 a1=2 for n>=2 an = Sn -S(n-1)2an =(an-1)(an+2) - (a(n-1)-1)(a(n-1)+2)(an)^2-an - [a(n-1)]^2- a(n-1) =0 [an + a(n-1)]. [an - a...
已知正数数列{an}的前n项和为Sn,且对任意的正整数n满足 2倍的根号下...题目应有笔误,应该是“设数列{an}各项为正数,前n项和为Sn,且二倍根号下Sn=an+1,(n为一切正整数) (1)求数列{an}通项公式(2)记bn=1/(二倍根号下an+二倍根号下an+1),求数列{bn}的前n项和Tn”吧?2√S(n)=a(n)+1,得2√a(1)=a(1)+1,解得a(1)=1 并有4S(n)=...
已知数列an的各项均为正数,前n项和为sn,且sn=an(an+1)/2,n为正整数...(an-a(n-1)-1)(an+a(n-1))=0 因为an的各项均为正数 所以an-a(n-1)-1=0 即an-a(n-1)=1 所以是等差数列 2)a1=a1(a1+1)/2 a1=1 由第一问得到an=n bn=1/2sn=1/an(an+1)=1/an-1/(an+1)=1-1/2 所以tn=1-1/2+1/2-1/3+1/3-1/4+...+1/an-1/an...
已知数列{an}的各项为正数,前n项和为Sn,且Sn=an(an+1)/2,n∈N)(1...第一问很显然就不说了 第二问、因为T(2n+1)-Tn=1/(n+1)+1/(n+2)+...+1/(2n+1)总共有n+1项。每一项都小于等于1/(n+1)因此上式就小于等于(n+1)*1/(n+1)=1 也就是说m大于等于20即可
设各项都为正数的数列{an}的前n项和为Sn,且Sn=1/2(an+1/an)S[4]=a[4]+√3=1/2(a[4]+1/a[4]),于是:a[4]=√4-√3 于是可以猜想:a[n]=√n-√(n-1);(2)显然:n=1时成立,假设n=k时,a[k]=√k-√(k-1),S[k]=√k n=k+1时,S[k+1]=a[k+1]+S[k]=a[k+1]+√k=1/2(a[k+1]+1/a[k+1]),于是:a[k+1]=...