KMeans聚类算法,简短易懂的python代码
发布网友
发布时间:2024-10-01 09:03
我来回答
共1个回答
热心网友
时间:2024-11-02 16:12
k-means算法在理论上并不复杂,但实际编写Python代码时,一些同学可能会感到困难,这可能会在面试中影响表现。
以下是k-means算法的基本原理:
首先,我们需要指定样本数据集data和聚类数量k。接下来,按照以下步骤进行操作:
1. 初始化:随机选择k个样本点作为初始聚类中心。
2. 聚类过程:计算每个样本点到各个聚类中心的距离,并将样本指派到最近的聚类中心所在的类别。
3. 计算新的聚类中心:对于每个聚类结果,计算该类中所有样本的均值,作为新的聚类中心。
4. 判断迭代是否收敛:如果新旧聚类中心没有变化或者满足迭代条件,则输出结果并结束;否则,回到步骤2继续迭代。
下面是相应的Python代码实现。
为了测试代码,我们随机生成了200个样本点,样本维度为2,将其聚为3类。
聚类结果输出。
为了更直观地展示聚类效果,我们将进行可视化展示。
-完结-