发布网友 发布时间:2024-09-30 18:03
共1个回答
热心网友 时间:2024-12-02 01:21
下面给出一般情形,另a=3即可
证明:lima的n次方/n!=0
【方法一】存在N>2|a|,
记M=|a|^N/N!,当n>N时,|a|^n/n!=M*[|a|/(N+1)]*[|a|/(N+2)]*……*[|a|/(n)]<M*(1/2)*(1/2)*……*(1/2)
=M/2^(n-N),
当n>N时,0<|a|^n/n!<M/2^(n-N),
而 lim(n→∞)[M/2^(n-N)]=0,
由夹*准则知:lim(n→∞)〔a的n次方/n!〕=0.
【方法二】利用级数更简单:∑(n:0→∞)〔a的n次方/n!〕=e^a ,
根据级数收敛的必要条件 lim(n→∞)〔a的n次方/n!〕=0.