3的e次方大于e的3次方吗?
发布网友
发布时间:2024-09-26 16:52
我来回答
共2个回答
热心网友
时间:2024-10-27 14:32
3的e次方大于e的3次方
利用函数单调性即可比较大小
比较e^3与3^e,即比较e与3^(e/3)
记f(x)=3^(x/3)-x,x≥3,f '(x)=3^( x/3-1) ln3 -1>3^( x/3-1) -1≥3^0 -1=0,
∴f(x)是増函数,
∴f(e)>f(3)=0,3^(e/3) - π >0,∴3^e>e^3.
扩展资料:
导数与函数的性质:
单调性
1、若导数大于零,则单调递增;若导数小于零,则单调递减;导数等于零为函数驻点,不一定为极值点。需代入驻点左右两边的数值求导数正负判断单调性。
2、若已知函数为递增函数,则导数大于等于零;若已知函数为递减函数,则导数小于等于零。
凹凸性
可导函数的凹凸性与其导数的单调性有关。如果函数的导函数在某个区间上单调递增,那么这个区间上函数是向下凹的,反之则是向上凸的。
如果二阶导函数存在,也可以用它的正负性判断,如果在某个区间上恒大于零,则这个区间上函数是向下凹的,反之这个区间上函数是向上凸的。曲线的凹凸分界点称为曲线的拐点。
热心网友
时间:2024-10-27 14:32
如果只是需要一个正确答案,
那么可以通过近似运算得结论
未完待续
附录:
求eln3的近似值
如果需要证明,那么构造函数
供参考,请笑纳。