发布网友 发布时间:2024-09-25 23:07
共2个回答
热心网友 时间:2024-10-03 09:32
你那样做错是因为处于加减位置的无穷小量不能直接用等价无穷小量,那样相当于把它们拆开了,默认了它们分别有极限,就像这个题,你那样做默认了lim[ln(1-2x)/x]/x和limf(x)/x都存在,实际上前者不存在。例如x趋近于0时,lim(tanx-sinx)/(sinx)^3=limtanx(1-cosx)/(sinx)^3=1/2如果用你那种方法相当于这样做lim(tanx-sinx)/(sinx)^3=lim(x-x)/(sinx)^3=0,显然不对热心网友 时间:2024-10-03 09:32
答案:6解法:lim_{x→0}{x[f(x)-2]+2x+ln(1-2x)}/x^2=lim_{x→0}{x[f(x)-2]}/x^2+lim_{x→0}{2x+ln(1-2x)}/x^2=4,热心网友 时间:2024-10-03 09:38
你那样做错是因为处于加减位置的无穷小量不能直接用等价无穷小量,那样相当于把它们拆开了,默认了它们分别有极限,就像这个题,你那样做默认了lim[ln(1-2x)/x]/x和limf(x)/x都存在,实际上前者不存在。例如x趋近于0时,lim(tanx-sinx)/(sinx)^3=limtanx(1-cosx)/(sinx)^3=1/2如果用你那种方法相当于这样做lim(tanx-sinx)/(sinx)^3=lim(x-x)/(sinx)^3=0,显然不对热心网友 时间:2024-10-03 09:32
答案:6解法:lim_{x→0}{x[f(x)-2]+2x+ln(1-2x)}/x^2=lim_{x→0}{x[f(x)-2]}/x^2+lim_{x→0}{2x+ln(1-2x)}/x^2=4,