高一的数学题帮帮忙 高分悬赏
发布网友
发布时间:2024-09-25 20:39
我来回答
共2个回答
热心网友
时间:2024-10-22 17:05
答案:1: 2
解:由题得:向量PA=向量OA-向量OP
因为,向量OA=a, 向量OB=b, 向量OP=2tPA+tOB ( 这里,PA是指向量PA,OB是指向量OB)
所以,向量PA=a-(2tPA+tb)
由题知:1+2t≠0 ,(如果,1+2t=0,则,a+(-t)b=0 即:向量a,向量b共线,与题设矛盾!)
所以,向量PA=[1/(1+2t)]a+[-t/(1+2t)]b ( 这里,a是指向量a,b是指向量b)
又因为, 向量PB=向量OB-向量OP=b-[2tPA+tOB ]=b-2t{[1/(1+2t)]a+[-t/(1+2t)]b}-tb
=[-2t/(1+2t)]a+[(1+t)/(1+2t)]b
因为,向量PA、向量PB共线
所以,存在实数k(k≠0),使得:向量PA=k*向量PB
即:[1/(1+2t)]a+[-t/(1+2t)]b=k*{[-2t/(1+2t)]a+[(1+t)/(1+2t)]b}
所以,[(1+2kt)/(1+2t)]a+{[-t-(1+t)k]/(1+2t)}b=0
因为,由题知,向量a、向量b 不共线
所以,[(1+2kt)/(1+2t)]=0,{[-t-(1+t)k]/(1+2t)}=0
即:1+2kt=0, -t-(1+t)k=0
消去k 得:2t²-t-1=0 即:(t-1)(2t+1)=0
解之,t=1 或t=-1/2(不合题意舍去)
所以,向量PA=(1/3)*(a-b) ( 这里,a是指向量a,b是指向量b)
向量PB=(-2/3)*(a-b) ( 这里,a是指向量a,b是指向量b)
所以,|向量PA|/| 向量PB|=|(1/3)*(a-b)|/|(-2/3)*(a-b) |=1/2
所以,|向量PA|/| 向量PB|=1:2
热心网友
时间:2024-10-22 17:05
画三角型ABC,取AB上一点P。设PA的模/PB的模的值为X。AP向量=X*PB向量。AB向量=(X+1)*PB向量,而AB向量=OB向量-OA向量=b向量-a向量 得等式1.
OP向量=OA向量+AP向量=a向量+X*PB向量 而已知OP=2tPA+tOB, AP向量=X*PB向量
得 a向量+X*PB向量=-2tX*PB向量+t*b向量 得等式2
结合等式1,2 得X=(tb-a)/((t+1)b-2ta)
参考资料:吧、BP