...形ACD和三角形BCE都是等腰直角三角形,∠ACD=∠BCE=90゜,AE交DC...
发布网友
发布时间:2024-09-26 05:08
我来回答
共2个回答
热心网友
时间:2024-10-05 17:44
解:猜测AE=BD,AE⊥BD;(2分)
理由如下:
∵∠ACD=∠BCE=90°,
∴∠ACD+∠DCE=∠BCE+∠DCE,即∠ACE=∠DCB,(3分)
∵△ACD和△BCE都是等腰直角三角形,
∴AC=CD,CE=CB,(4分)
∴△ACE≌△DCB(SAS),(5分)
∴AE=BD,(6分)∠CAE=∠CDB;(7分)
∵∠AFC=∠DFH,
∴∠DHF=∠ACD=90°,(8分)
∴AE⊥BD.(9分)故线段AE和BD的数量相等,位置是垂直关系.
步骤之间的分值也给你了
热心网友
时间:2024-10-05 17:47
(4分)
∴△ace≌△dcb(sas),
∴ac=cd,ae⊥bd;(2分)
理由如下:
∵∠acd=∠bce=90°解;(7分)
∵∠afc=∠dfh:猜测ae=bd,
∴∠acd+∠dce=∠bce+∠dce,(6分)∠cae=∠cdb,
∴∠dhf=∠acd=90°,(5分)
∴ae=bd,ce=cb,(3分)
∵△acd和△bce都是等腰直角三角形,即∠ace=∠dcb,(8分)
∴ae⊥bd.(9分)故线段ae和bd的数量相等