...E为棱BC的中点,过E作其外接球的截面,则截面面积的最小值为___百度...
发布网友
发布时间:2024-09-30 01:49
我来回答
共1个回答
热心网友
时间:2024-10-25 06:41
将四面体ABCD放置于正方体中,如图所示
可得正方体的外接球就是四面体ABCD的外接球,
∵正四面体ABCD的棱长为4,
∴正方体的棱长为22,
可得外接球半径R满足2R=22?3,解得R=6
E为棱BC的中点,过E作其外接球的截面,当截面到球心O的距离最大时,
截面圆的面积达最小值,
此时球心O到截面的距离等于正方体棱长的一半,
可得截面圆的半径为r=R2?2=2,得到截面圆的面积最小值为S=πr2=4π.
故答案为:4π