是不是所有代数数都可以用根号表示?
发布网友
发布时间:2024-09-29 10:22
我来回答
共3个回答
热心网友
时间:2024-09-29 12:40
这里只讨论整系数方程。
有理系数的,可以通过乘法化为整系数;
含有代数数的,可以通过乘方和四则运算化为有理系数;
事实上,
我们关心求根公式,实际与系数本身无关,而是与系数的组合与分布情况有关。
比方说:方程x*x=超越数e,我们仍然说他有求根公式,±√e,只是根号下为超越数。
一般五次以上方程无求根公式,是说,无法用有限次数的开方运算来求得其根。
也就是说,绝大多类别的五次以上方程所确定的代数数,不能用只有有限次数个根号的根式来表示(###)。
要举例的话,只要列出一个不能在实数域上被分解的五次方程,它所确立的五次代数数,都如(###)所说,例如:x^5+x+1=0.
对于什么样的方程能够用根式解,伽罗华基于阿贝尔的成果,建立了群论,对此已经作了很好的解决;而不符合其判定的,就是不可解的,从而所确立的代数数,就是如(###)所说的。
而用迭代法,理论上可以找到无穷级数或其他形式的精确解.不过,对于迭代或允许按某些规则进行无限次开方来求精确解,还有很多课题需要我们去研究。
比如一个简单的问题:一般的五次方程,能否通过有限次的开方与无穷级数、迭代配合起来,以最简的形式描述其解?
能用使用有限次根号的根式求根的整系数五次方程,必定可以在实数域上分解为一次多项式之积。
在有理数域上,可能分解为一次,二次,三次,四次多项式的各种积或幂。
热心网友
时间:2024-09-29 12:35
1.如果a和b是两个连续的自然数,那么a和b的遭遇大公因数是(
1
),最小的公倍数是(
ab
)。
2.x与y互为质数,它们的最大公因数是(
1
),它们的最小公倍数是(
xy
)。
3.如果a是b的倍数,那么数a和数b的最大公因数是(
b
),最小公倍数是(
a
)。
a.a
b.b
c.ab
4.有两根绳子,一根长36分米,另一根长48分米,把它们都剪成长度相等的小段,而且没有剩余。没小段最长是多少分米?一共可以剪成几段?(写出详细的计算过程)
36=2×2×3×3
48=2×2×2×2×3
36和48的最大公因数是2×2×3=12
所以每小段长12分米
一共可以剪成(36+48)÷12=7(段)
热心网友
时间:2024-09-29 12:40
但特殊的五次方程的根是不是都可以用根号表示
那要看你想要多“特殊”……
很多代数数都不能……
随便写个麻烦的高次方程就不行了……