发布网友 发布时间:2024-09-29 07:50
共1个回答
热心网友 时间:2024-10-01 23:56
cosx-1和-(x²)/2是等价无穷小量。
解:cosx在x0=0处展开得cosx=1-x²/2+x⁴/4-x⁶/6+...+(-1)ⁿx²ⁿ/2n... ,即1-cosx=x²/2-x⁴/4+x⁶/6+...+(-1)ⁿx²ⁿ/2n...,所以lim[(1-cosx)/(x²/2)]=1(x→0),因为1-cosx与x²/2为等价无穷小量,所以cosx-1和-(x²)/2是等价无穷小量。
求极限时,使用等价无穷小的条件:
1、被代换的量,在取极限的时候极限值为0;
2、被代换的量,作为被乘或者被除的元素时可以用等价无穷小代换,但是作为加减的元素时就不可以。