发布网友 发布时间:2022-04-14 18:44
共2个回答
懂视网 时间:2022-04-14 23:05
最近几天对客户的一个核心数据库进行了优化,将资源消耗较高的SQL优化完成之后,物理读和逻辑读总量得到了降低。客户反馈优化后性能有提升,但仍然在某些工作日的业务高峰时段存在性能问题。 我们通过将性能不佳的业务高峰时段(即问题时段)与性能正常的业务
最近几天对客户的一个核心数据库进行了优化,将资源消耗较高的SQL优化完成之后,物理读和逻辑读总量得到了降低。客户反馈优化后性能有提升,但仍然在某些工作日的业务高峰时段存在性能问题。热心网友 时间:2022-04-14 20:13
优化规划法属于运畴学范畴,而水资源研究是一个系统工程。近30年来,由于优化规划法科学地解决了水资源的开发、控制、分配、利用、处理和重复使用等多方面问题,因此日益受到重视,并成为地下水管理模型建立过程中所应用的一个重要方法。
在水资源管理工作中,最常使用的优化规划方法有线性规划、动态规划、非线性规划和多目标规划。
一、线性规划法
线性规划(linear programming,简称 LP法)是系统分析方法的一个基本内容。自从1974年丹齐格(George Dantzig)提出求解一般线性规划问题的单纯形法之后,线性规划不仅在理论上趋于成熟,而且在实际应用中也得到了日益深入和普及。近年来,随着电子计算机技术的迅速发展,线性规划法已成为地下水管理中最常用的方法之一。
线性规划就是由一个线性的目标函数和一组线性的约束组成的线性代数不等式(方程)组。目标函数是由管理目标的变量组成的函数。根据要求,可使目标函数值为最大或最小。如若目标函数为抽水量、经济效益等,可取最大;若目标函数为污染程度、地下水位降等,则可取最小。约束条件可分为两类:一是水位、流量和水质所必须服从的运动规律,属水均衡约束条件,它通常以地下水流状态方程或联合地下水溶质运移方程作为水均衡约束的等式约束条件;二是社会经济技术和环境生态等约束条件,即需求约束,如抽水量、地下水位及水质方面的规定,以及防止地面沉降、海水入侵等有害环境地质问题而进行的*。除上述两种类型的约束条件外,所有的线性规划都要求非负约束。
线性规划的标准形式为:
现代水文地质学
式中:Z为目标函数;
C=(C1,C2,…,Cn),为价值向量;
X=(x1,x2,…,xn)T,为未知数列向量的转置式;
为约束方程组的系数矩阵;
b=(b1,b2,…,bn)T,为限定列向量的转置式。
线性规划问题可以有不同形式,例如,目标函数可以取最大,也可以取最小;约束条件可以是“≤”、“≥”或者“=”形式。但在问题求解之前,均须按标准化方法将其转化为上述标准形式。线性规划问题的求解常用单纯形法。这种方法已被普遍采用,在此不再赘述。
运用线性规划法可以解决各种各样的水资源问题,如供水分配问题、复杂含水层管理问题和地表水与地下水联合调度问题等。这种方法的优点是概念明确,计算方法成熟;其不足之处是不能直接处理含水层管理中常遇到的非线性问题和随机性问题;对于需要作出连续决策或多阶段优化决策的地下水管理问题时,线性规划法也有极大的困难,这就需要运用其他方法,如非线性规划法,动态规划法等加以解决。
二、非线性规划法
在线性规划中,其目标函数和约束条件都是自变量的一次函数。在实际工作中,常常会遇到目标函数和约束条件很难用线性函数表达的情形。若目标函数或约束条件中存在有变量的非线性函数,则称这种问题为非线性规划问题。目前,非线性规划还没有适合于各种问题的一般计算方法,须针对不同的问题,采用不同的方法进行求解。如一维搜索、梯度法、变尺度法等(对于无约束极值优化问题)和二次规划、逐步*近、制约函数法等(对于有约束极值优化问题)。目前,非线性规划在水文地质学中的应用不如线性规划和动态规划广泛。
三、动态规划法
动态规划(dynamic programming,简称DP法)是解决多阶段决策过程最优化的一种方法。许多实际问题利用动态规划的方法处理常比线性、非线性规划方法更为有效,特别是对于那些离散型问题。实际上,动态规划就是分多阶段进行决策,最后使整个过程最优的方法。
动态规划中的“动态”,狭义地讲,就是指时间过程。因此动态规划就是在时间过程中,依次采取一系列的决策,来解决这个过程的最优化问题,如地下水系统中水的变化(水位、水质及水量等)。不过,对一些没有时间过程的“静态”问题,如水质污染控制、水量分配等,在一定条件下,也可以把它们当作多阶段决策过程来考虑,并使用动态规划来求解。
动态规划的基本思想是1957年美国的贝尔曼(R.Bellman)等提出的“最优化原理”。就是用一个基本的递推关系式使过程连续地向前转移,但在求解时,则按倒过来的顺序进行,即从终点开始逐段向起点方向寻找最优。
动态规划的函数基本方程(递推关系式)为:
现代水文地质学
式中:x——k阶段的某一状态;
uk(x)——第k段当状态处于x时的决策变量;
dk(x,uk(x))——指标函数,由点x到点uk(x)的指标;
fk(x)——最优指标函数。
四、多目标规划法
在水资源的开发利用中,往往具有多种目的要求,如在要求供水量最大的同时,有时还要求保证泉的流量,或水质处理费用最小,或抽水费用最小等。这样的问题就是一个多目标问题。多目标规划就是为了解决这种多个目标要求的较为复杂的问题。
多目标问题与单目标问题的区别,不仅表现在目标函数数量上的差异,而且更重要的是质的区别。首先,多目标规划与单目标规划相比,能够更全面地反映总体利益。单目标规划往往只偏重一个方面,而多目标理论和方法使人们有可能从相互对立、相互冲突、相互竞争的不同利益中,探讨其总体最优的方案或策略。其次,单目标规划的度量单位是统一的,而多目标规划则有各自的度量单位,而且大多是不可公度的。有时,多目标规划中的所有问题都可用货币单位来度量。这时,不可公度性就不存在了,多目标规划就转换为单目标规划问题了。但有时,即使目标的度量单位相同,但目标间存在着相互竞争,这仍然属于多目标问题。例如,在地下水开发中,要使供水的效益最大,同时还要使抽水的费用最小。虽然两个目标均可用货币表示,但目标之间相互矛盾,故仍是多目标规划问题。最后,单目标和多目标问题的求解,在性质上是不同的。单目标求解可得出绝对最优解,而多目标规划则不可能。一般在多目标决策中,通常没有一个方案能使所有目标的值均达到最优。这样,多目标决策问题一般不存在一个在通常意义下的最优解。但是,任何多目标决策问题都存在它的非劣解,即在所有可行解的集合中,没有一个解能优于它。
多目标规划模型:
现代水文地质学
其中f1(x),f2(x),…,fp(x)为目标,可以求最大,也可以求最小。式(15-6)为目标函数,式(15-7)和式(15-8)为约束条件。在水资源管理中,这些目标函数可以是抽水量最大,抽水费用最小,水质污染程度最小,污水处理费用最小等等。约束条件可以是水位*,水中溶质浓度*等。求解多目标规划模型的方法很多,如化多目标为单目标法(约束法、乘除法、权重法、目标规划法等)和逐步法等。
总之,优化规划法是地下水管理决策中强有力的方法之一,目前已被广泛利用。但它仅是一种手段,在应用过程中不可过分夸大其在管理决策中的作用,而忽视基础地质、水文地质方面的工作,以免给工作带来失误,甚至得出错误的结论。例如,应用优化规划法于水资源管理决策时,要注意约束不当问题。优化问题的约束条件非常重要,实践中,因约束条件不当,常造成整个规划模型的失败。在确定约束条件时,除了水文地质意义要正确以外,约束条件的数量必须适中,过多或过少的约束都是不可接受的,更不能认为约束条件越多越好。在构造约束条件时,还要避免矛盾约束,或只有部分约束条件起作用,而大部分的约束条件无效。
例如,对于一个开采地下水的优化管理问题,其目标函数是寻求最大经济效益,其约束条件经常是既有水位*又有供水水量要求,这时就应注意避免出现矛盾约束。假设我们在约束中要求水位必须保持在h0(m)同时还要求必须满足Q(m3/d)的供水要求。显然,如果研究区在h0水位降深情况下,其抽水量只能小于Q,那么这种约束就是矛盾约束,很难求得满意的解或根本无解。这就需要经验丰富的专家根据具体的地质、水文地质条件,并全面考虑环境、生态和社会效益之后,对约束条件进行修正。
又如,规划方案问题。当双方利用水资源有矛盾时,如供水和矿山排水,保泉和供水等,往往存在着优化规划方案选择的问题。这时,有如下可能性:①矛盾双方可以协调,这时可以利用优化模型求解。②矛盾双方不可以协调,即如果满足一方,则另一方得不到满足。此时,如果约束条件可以修正,即某一方可以被修正,仍可利用优化模型求解。③矛盾双方不可以协调,而且双方都坚持要求得到满足。这时,只有在考虑采用新方案情况下进行最优化求解才是有意义的。
因此,上述矛盾因素双方是否协调,应在建立最优化模型之前,根据研究区地质、水文地质条件和实际资料情况先作出初步的评价,这样才可以避免盲目计算。反之,如果对一个水资源规划问题不进行初步的水文地质、地下水资源的评价预测,即在条件不太清楚的情况下,就建立最优化模型,常会导致模型的失败。