线性回归r方的意义
发布网友
发布时间:2024-09-05 10:02
我来回答
共1个回答
热心网友
时间:2024-09-28 05:05
R2是指拟合优度,是回归直线对观测值的拟合程度。
表达式:R2=SSR/SST=1-SSE/SST
其中:SST=SSR+SSE,SST(total sum of squares)为总平方和,SSR(regression sum of squares)为回归平方和,SSE(error sum of squares) 为残差平方和。
回归平方和:SSR(Sum of Squares forregression) = ESS (explained sum of squares)
残差平方和:SSE(Sum of Squares for Error) = RSS(residual sum of squares)
总离差平方和:SST(Sum of Squares fortotal) = TSS(total sum of squares)
SSE+SSR=SST RSS+ESS=TSS扩展资料
拟合优度检验:
主要是运用判定系数和回归标准差,检验模型对样本观测值的拟合程度。当解释变量为多元时,要使用调整的拟合优度,以解决变量元素增加对拟合优度的影响。
假定一个总体可分为r类,现从该总体获得了一个样本——这是一批分类数据,需要我们从这些分类数据中出发,去判断总体各类出现的概率是否与已知的概率相符。R2是指拟合优度(Goodness of Fit),是回归直线对观测值的拟合程度。
度量拟合优度的统计量是可决系数(亦称确定系数)R2。R2最大值为1。R2的值越接近1,说明回归直线对观测值的拟合程度越好;反之,R2的值越小,说明回归直线对观测值的拟合程度越差。
R2衡量的是回归方程整体的拟合度,是表达因变量与所有自变量之间的总体关系。R2等于回归平方和在总平方和中所占的比率,即回归方程所能解释的因变量变异性的百分比。
热心网友
时间:2024-09-28 05:08
R2是指拟合优度,是回归直线对观测值的拟合程度。
表达式:R2=SSR/SST=1-SSE/SST
其中:SST=SSR+SSE,SST(total sum of squares)为总平方和,SSR(regression sum of squares)为回归平方和,SSE(error sum of squares) 为残差平方和。
回归平方和:SSR(Sum of Squares forregression) = ESS (explained sum of squares)
残差平方和:SSE(Sum of Squares for Error) = RSS(residual sum of squares)
总离差平方和:SST(Sum of Squares fortotal) = TSS(total sum of squares)
SSE+SSR=SST RSS+ESS=TSS扩展资料
拟合优度检验:
主要是运用判定系数和回归标准差,检验模型对样本观测值的拟合程度。当解释变量为多元时,要使用调整的拟合优度,以解决变量元素增加对拟合优度的影响。
假定一个总体可分为r类,现从该总体获得了一个样本——这是一批分类数据,需要我们从这些分类数据中出发,去判断总体各类出现的概率是否与已知的概率相符。R2是指拟合优度(Goodness of Fit),是回归直线对观测值的拟合程度。
度量拟合优度的统计量是可决系数(亦称确定系数)R2。R2最大值为1。R2的值越接近1,说明回归直线对观测值的拟合程度越好;反之,R2的值越小,说明回归直线对观测值的拟合程度越差。
R2衡量的是回归方程整体的拟合度,是表达因变量与所有自变量之间的总体关系。R2等于回归平方和在总平方和中所占的比率,即回归方程所能解释的因变量变异性的百分比。