为什么"一切集合的集合"是不存在的?
发布网友
发布时间:2024-09-05 04:34
我来回答
共4个回答
热心网友
时间:1天前
因为“一切集合”是无穷尽的,所以“一切集合的集合”也是无穷尽的,这与“一切集合的集合”的子集之间的大小关系是相悖的,所以无法成立,故不存在。
这个观点是俄国的数学家康托尔提出的,即著名的康托尔悖论。
悖论观点:大全集不存在,即包含一切集合的集合是否存在
有1个元素的集合其子集有2个,有2个元素的集合其子集共有4个,一般地,有n个元素的集合其子集有2^n个,n个元素的集合其基数为n,而其所有子集组成的集合的基数为2^n ,显然2^n>n。
因此有“康托尔定理”:任意集合(包括无穷集)的幂集的基数大于该任意集合的基数。
据康托尔集合理论,任何性质都可以决定一个集合,这样所有的集合又可以组成一个集合,即“所有集合的集合”(大全集)。
显然,此集合应该是最大的集合了,因此其基数也应是最大的。然而其子集的集合的基数按“康托尔定理”又必然是更大的,那么,“所有集合的集合”就不成其为“所有集合的集合”,这就是“康托尔悖论”。
扩展资料:
对这一悖论,康托尔并没有感到害怕,因为通过反证法恰恰证明没有“所有集合的集合”或者说“最大的集合”,当然也没有“最大的基数”。
悖论的出现这时并没有引起多大的震动,人们觉得这似乎仅仅牵涉到集合理论的一些技术问题,只要作适当的修正,集合论仍然会成为数学大厦的基础。
康托尔只是利用悖论进行反证,而并没有细究悖论的来源及意义,他没有意识到这种反证之所以可能,是因为他的理论中所使用的基本概念“集合”、“属于”、“元素”是包含着矛盾的。
参考资料来源:百度百科——康托尔悖论
热心网友
时间:1天前
集合中没有时间因素所以导致理发师悖论。
热心网友
时间:1天前
罗素悖论:
罗素悖论的通俗表达是:在某个城市中有一位理发师,他的广告词是这样写的:“本人的理发技艺十分高超,誉满全城。我将为本城所有不给自己刮脸的人刮脸,我也只给这些人刮脸。我对各位表示热诚欢迎!”来找他刮脸的人络绎不绝,自然都是那些不给自己刮脸的人。可是,有一天,这位理发师从镜子里看见自己的胡子长了,他本能地抓起了剃刀,你们看他能不能给他自己刮脸呢?如果他不给自己刮脸,他就属于“不给自己刮脸的人”,他就要给自己刮脸,而如果他给自己刮脸呢?他又属于“给自己刮脸的人”,他就不该给自己刮脸。
我们将这个问题抽象化:设M为一集合,P(M)表示M“是不以自己作为元素的集”这样一种性质。考察具有性质P的集合的类K={M|P(M)}。如果K是集合,那么,或者P(K)为真,或者非P(K)为真。然而,两者择一对于K是不可能的。实际上,p(K)不成立,因为由K的定义推知K包含着K,即非P(K)为真,另一方面,非P(K)也是不可能真的,因为这就表示K包含着K,而这与K的定义,亦即,他是不含自身类那样的集合的类,相矛盾.因此,K不是集合。
罗素悖论是朴素集合论所导致的悖论之一,它导致了第三次数学危机,迫使人们建立了公理化集合系统。在该系统中,我们证明“一切集合的集合A”不存在(它是x∈x可以成立的充分条件),它正是罗素悖论中集合M的定义域,若它不存在,则由分出公理(对任何集合A及性质P,有这样的集合B,它所含的元素,是且仅是A中的那些具有性质P的元素),M没有来源,也不存在。下面来证明“一切集合的集合A”不存在:
先证明康托尔定理:用P(X)记X的一切子集构成的集,用cardX表示X的势,康托尔定理如下:cardX<cardP(X).证明:对于空集来说,上述结论显然成立,所以可设X≠空集。因为P(X)含有X的一切单元素子集,故cardX≤cardP(X),现只需证明两者不相等。若相等,假定f:X-P(X)是双射,考察集合A={x∈X|x不∈f(x)},它由那样一些元素x∈X,x不含于它对应的集f(x)∈P(X),,组成的。因为A∈P(X),所以必能找到一个元素a∈X,使f(a)=A,这个元素a∈X既不能有a∈A(据A的定义),也不能有a不∈A(也是根据A的定义),这与排中律矛盾。得证。
回过头来,若“一切集合的集合A”存在,由康托尔定理知cardA<cardP(A).但由A的定义知:P(A)是A的子集,故cardA≥cardP(A).矛盾!因此A不存在。
热心网友
时间:1天前
假设一切集合的集合如果存在,
那么一定存在另一个集合,包含它及其他所有的集合,
与假设矛盾
另,集合不可以包含自己相当于,它是固定的,因为定义每一个对象都能确定是不是某一集合的元素,没有确定性就不能成为集合