发布网友 发布时间:2024-09-17 07:33
共1个回答
热心网友 时间:2024-09-29 13:59
导读:本篇文章首席CTO笔记来给大家介绍有关python多少库的相关内容,希望对大家有所帮助,一起来看看吧。
在python中一共有多少个标准库?Python语言官方的参考手册钟,介绍了与Python一同发行的标准库。
文本处理服务
string?---常见的字符串操作
re?---正则表达式操作
difflib?---计算差异的辅助工具
textwrap?---文本自动换行与填充
unicodedata?---Unicode数据库
stringprep?---因特网字符串预备
readline?---GNUreadline接口
rlcompleter?---GNUreadline的补全函数
二进制数据服务
struct?---将字节串解读为打包的二进制数据
codecs?---编解码器注册和相关基类
数据类型
datetime?---基本日期和时间类型
zoneinfo?---IANA时区支持
calendar?---日历相关函数
collections?---容器数据类型
collections.abc?---容器的抽象基类
heapq?---堆队列算法
bisect?---数组二分查找算法
array?---高效的数值数组
weakref?---弱引用
types?---动态类型创建和内置类型名称
copy?---浅层(shallow)和深层(deep)复制操作
pprint?---数据美化输出
reprlib?---另一种?repr()?实现
enum?---对枚举的支持
graphlib?---操作类似图的结构的功能
数字和数学模块
numbers?---数字的抽象基类
math?---数学函数
cmath?---关于复数的数学函数
decimal?---十进制定点和浮点运算
fractions?---分数
random?---生成伪随机数
statistics?---数学统计函数
函数式编程模块
itertools?---为高效循环而创建迭代器的函数
functools?---高阶函数和可调用对象上的操作
operator?---标准运算符替代函数
文件和目录访问
pathlib?---面向对象的文件系统路径
os.path?---常用路径操作
fileinput?---迭代来自多个输入流的行
stat?---解析?stat()?结果
filecmp?---文件及目录的比较
tempfile?---生成临时文件和目录
glob?---Unix风格路径名模式扩展
fnmatch?---Unix文件名模式匹配
linecache?---随机读写文本行
shutil?---高阶文件操作
数据持久化
pickle?---Python对象序列化
copyreg?---注册配合?pickle?模块使用的函数
shelve?---Python对象持久化
marshal?---内部Python对象序列化
dbm?---Unix"数据库"接口
sqlite3?---SQLite数据库DB-API2.0接口模块
数据压缩和存档
zlib?---与?gzip?兼容的压缩
gzip?---对?gzip?格式的支持
bz2?---对?bzip2?压缩算法的支持
lzma?---用LZMA算法压缩
zipfile?---使用ZIP存档
tarfile?---读写tar归档文件
文件格式
csv?---CSV文件读写
configparser?---配置文件解析器
tomllib?---ParseTOMLfiles
netrc?---netrc文件处理
plistlib?---生成与解析Apple?.plist?文件
加密服务
hashlib?---安全哈希与消息摘要
hmac?---基于密钥的消息验证
secrets?---生成管理密码的安全随机数
通用操作系统服务
os?---多种操作系统接口
io?---处理流的核心工具
time?---时间的访问和转换
argparse?---命令行选项、参数和子命令解析器
getopt?---C风格的命令行选项解析器
logging?---Python的日志记录工具
logging.config?---日志记录配置
logging.handlers?---日志处理程序
getpass?---便携式密码输入工具
curses?---终端字符单元显示的处理
curses.textpad?---用于curses程序的文本输入控件
curses.ascii?---用于ASCII字符的工具
curses.panel?---curses的面板栈扩展
platform?---获取底层平台的标识数据
errno?---标准errno系统符号
ctypes?---Python的外部函数库
并发执行
threading?---基于线程的并行
multiprocessing?---基于进程的并行
multiprocessing.shared_memory?---Sharedmemoryfordirectaccessacrossprocesses
concurrent?包
concurrent.futures?---启动并行任务
subprocess?---子进程管理
sched?---事件调度器
queue?---一个同步的队列类
contextvars?---上下文变量
_thread?---底层多线程API
网络和进程间通信
asyncio?---异步I/O
socket?---底层网络接口
ssl?---套接字对象的TLS/SSL包装器
select?---等待I/O完成
selectors?---高级I/O复用库
signal?---设置异步事件处理程序
mmap?---内存映射文件支持
互联网数据处理
email?---电子邮件与MIME处理包
json?---JSON编码和解码器
mailbox?---操作多种格式的邮箱
mimetypes?---映射文件名到MIME类型
base64?---Base16,Base32,Base64,Base85数据编码
binascii?---二进制和ASCII码互转
quopri?---编码与解码经过MIME转码的可打印数据
结构化标记处理工具
html?---超文本标记语言支持
html.parser?---简单的HTML和XHTML解析器
html.entities?---HTML一般实体的定义
XML处理模块
xml.etree.ElementTree?---ElementTreeXMLAPI
xml.dom?---文档对象模型API
xml.dom.minidom?---最小化的DOM实现
xml.dom.pulldom?---支持构建部分DOM树
xml.sax?---支持SAX2解析器
xml.sax.handler?---SAX处理句柄的基类
xml.sax.saxutils?---SAX工具集
xml.sax.xmlreader?---用于XML解析器的接口
xml.parsers.expat?---使用Expat的快速XML解析
互联网协议和支持
webbrowser?---方便的Web浏览器控制工具
wsgiref?---WSGI工具和参考实现
urllib?---URL处理模块
urllib.request?---用于打开URL的可扩展库
urllib.response?---urllib使用的Response类
urllib.parse?用于解析URL
urllib.error?---urllib.request引发的异常类
urllib.robotparser?---robots.txt语法分析程序
http?---HTTP模块
http.client?---HTTP协议客户端
ftplib?---FTP协议客户端
poplib?---POP3协议客户端
imaplib?---IMAP4协议客户端
smtplib?---SMTP协议客户端
uuid?---?RFC4122?定义的UUID对象
socketserver?---用于网络服务器的框架
http.server?---HTTP服务器
http.cookies?---HTTP状态管理
http.cookiejar?——HTTP客户端的Cookie处理
xmlrpc?---XMLRPC服务端与客户端模块
xmlrpc.client?---XML-RPC客户端访问
xmlrpc.server?---基本XML-RPC服务器
ipaddress?---IPv4/IPv6操作库
多媒体服务
wave?---读写WAV格式文件
colorsys?---颜色系统间的转换
国际化
gettext?---多语种国际化服务
locale?---国际化服务
程序框架
turtle?---海龟绘图
cmd?---支持面向行的命令解释器
shlex?——简单的词法分析
Tk图形用户界面(GUI)
tkinter?——Tcl/Tk的Python接口
tkinter.colorchooser?---颜色选择对话框
tkinter.font?---Tkinter字体封装
Tkinter对话框
tkinter.messagebox?---Tkinter消息提示
tkinter.scrolledtext?---滚动文字控件
tkinter.dnd?---拖放操作支持
tkinter.ttk?---Tk风格的控件
tkinter.tix?---TK扩展包
python常用库有哪些?python常用的库有sysos获取系统相关信息
re正则表达式模块
numpypandassklearn模块用于科学计算
python库有哪些Python比较常见的库有:Arrow、Behold、Click、Numba、Matlibplot、Pillow等:
1、Arrow
Python中处理时间的库有datetime,但是它过于简单,使用起来不够方便和智能,而Arrow可以说非常的方便和智能。它可以轻松地定位几个小时之前的时间,可以轻松转换时区时间,对于一个小时前,2个小时之内这样人性化的信息也能够准确解读。
2、Behold
调试程序是每个程序员必备的技能,对于脚本语言,很多人习惯于使用print进行调试,然而对于大项目来说,print的功能还远远不足,我们希望有一个可以轻松使用,调试方便,对变量监视完整,格式已于查看的工具,而Behold就是那个非常好用的调试库。
3、Click
现在几乎所有的框架都有自己的命令行脚手架,Python也不例外,那么如何快速开发出属于自己的命令行程序呢?答案就是使用Python的Click库。Click库对命令行api进行了大量封装,你可以轻松开发出属于自己的CLI命令集。终端的颜色,环境变量信息,通过Click都可以轻松进行获取和改变。
4、Numba
如果你从事数学方面的分析和计算,那么Numba一定是你必不可少的库。Numpy通过将高速C库包装在Python接口中来工作,而Cython使用可选的类型将Python编译为C以提高性能。但是Numba无疑是最方便的,因为它允许使用装饰器选择性地加速Python函数。
5、Matlibplot
做过数据分析,数据可视化的数学学生一定知道matlab这个软件,这是一个收费的数学商用软件,在Python中,Matlibplot就是为了实现这个软件中功能开发的第三方Python库。并且它完全是免费的,很多学校都是用它来进行数学教学和研究的。
6、Pillow
图像处理是任何时候我们都需要关注的问题,平时我们看到很多ps中的神技,比如调整画面颜色,饱和度,调整图像尺寸,裁剪图像等等,这些其实都可以通过Python简单完成,而其中我们需要使用的库就是Pillow。
7、pyqt5
Python是可以开发图形界面程序的。而pyqt就是一款非常好用的第三方GUI库,有了它,你可以轻松开发出跨平台的图形应用程序,其中qtdesigner设计器,更是加速了我们开发图形界面的速度。
除了上述介绍的之外,Python还有很多库,比如:Pandas、NumPy、SciPy、Seaborn、Keras等。
结语:以上就是首席CTO笔记为大家整理的关于python多少库的全部内容了,感谢您花时间阅读本站内容,希望对您有所帮助,更多关于python多少库的相关内容别忘了在本站进行查找喔。