泊松分布的期望、方差、均值怎么求?
发布网友
发布时间:2024-09-15 09:01
我来回答
共1个回答
热心网友
时间:2024-11-25 12:49
1、泊松分布的期望和方差均是λ,λ表示总体均值;P(X=0)=e^(-λ)。
2、泊松分布的期望是λ,λ表示总体均值,P(X=0)=e^(-λ)。分析过程如下:求解泊松分布的期望:泊松分布的概率函数:对于P(X=0),可知k=0,代入上式有:P(X=0)=e^(-λ)。
3、泊松分布的期望和方差均是λ,λ表示总体均值;P(X=0)=e^(-λ)。泊松分布是一种统计与概率学里常见到的离散概率分布,由法国数学家西莫恩·德尼·泊松(Siméon-DenisPoisson)在1838年时发表。
4、泊松分布公式是Var(x)=λ。二项分布的期望E(r)=np,方差Var(r)=npq,而泊松分布的期望和方差均为λ。此时我们需要这两种分布的期望和方差相近似,即np与npq近似相等的情况。
5、泊松分布的期望和方差均是λ,λ表示总体均值;P(X=0)=e^(-λ)。泊松分布,是一种统计与概率学里常见到的离散概率分布,由法国数学家西莫恩·德尼·泊松(Siméon-DenisPoisson)在1838年时发表。