三角形ABC内一点O,有向量OA向量OB向量OC
发布网友
发布时间:2024-08-20 08:27
我来回答
共3个回答
热心网友
时间:2024-08-23 06:56
取BC中点D,连结并延长OD至E,使DE=OD
于是四边形BOCE是平行四边形
所以向量OB=向量CE
所以向量OB+向量OC=向量CE+向量OC=向量OE
而由向量OA+向量OB+向量OC=0得
向量OB+向量OC=-向量OA=向量AO
所以向量AO和向量OE共线
所以A、O、E三点共线
而D在OE上
所以A、O、D三点共线
而点D又是BC中点
所以AD(即AO)是三角形ABC中BC边中线
同理可证BO是AC边中线,CO是AB边中线
所以点O是三角形ABC的重心
参考资料:http://zhidao.baidu.com/question/83976171.html
热心网友
时间:2024-08-23 06:59
解:
取BC中点D,连结并延长OD至E,使DE=OD
于是四边形BOCE是平行四边形
所以向量OB=向量CE
所以向量OB+向量OC=向量CE+向量OC=向量OE
而由向量OA+向量OB+向量OC=0得
向量OB+向量OC=-向量OA=向量AO
所以向量AO和向量OE共线
所以A、O、E三点共线
而D在OE上
所以A、O、D三点共线
而点D又是BC中点
所以AD(即AO)是三角形ABC中BC边中线
同理可证BO是AC边中线,CO是AB边中线
所以点O是三角形ABC的重心
热心网友
时间:2024-08-23 07:02
三角形ABC的重心